x ray background
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 23)

H-INDEX

64
(FIVE YEARS 4)

2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Shuo Sui ◽  
Anne Mulichak ◽  
Raviraj Kulathila ◽  
Joshua McGee ◽  
Danny Filiatreault ◽  
...  

A novel capillary-based microfluidic strategy to accelerate the process of small-molecule-compound screening by room-temperature X-ray crystallography using protein crystals is reported. The ultra-thin microfluidic devices are composed of a UV-curable polymer, patterned by cleanroom photolithography, and have nine capillary channels per chip. The chip was designed for ease of sample manipulation, sample stability and minimal X-ray background. 3D-printed frames and cassettes conforming to SBS standards are used to house the capillary chips, providing additional mechanical stability and compatibility with automated liquid- and sample-handling robotics. These devices enable an innovative in situ crystal-soaking screening workflow, akin to high-throughput compound screening, such that quantitative electron density maps sufficient to determine weak binding events are efficiently obtained. This work paves the way for adopting a room-temperature microfluidics-based sample delivery method at synchrotron sources to facilitate high-throughput protein-crystallography-based screening of compounds at high concentration with the aim of discovering novel binding events in an automated manner.


2021 ◽  
Vol 92 ◽  
pp. 101612
Author(s):  
Roman A. Krivonos ◽  
Antony J. Bird ◽  
Eugene M. Churazov ◽  
John A. Tomsick ◽  
Angela Bazzano ◽  
...  
Keyword(s):  
X Ray ◽  

Author(s):  
D. V. Serbinov ◽  
M. N. Pavlinsky ◽  
A. N. Semena ◽  
N. P. Semena ◽  
A. A. Lutovinov ◽  
...  

2021 ◽  
Vol 502 (3) ◽  
pp. 3966-3975
Author(s):  
Roman Krivonos ◽  
Daniel Wik ◽  
Brian Grefenstette ◽  
Kristin Madsen ◽  
Kerstin Perez ◽  
...  

ABSTRACT We present measurements of the intensity of the cosmic X-ray background (CXB) with the Nuclear Spectroscopic Telescope Array (NuSTAR) telescope in the 3–20 keV energy range. Our method uses spatial modulation of the CXB signal on the NuSTAR detectors through the telescope’s side aperture. Based on the NuSTAR observations of selected extragalactic fields with a total exposure of 7 Ms, we have estimated the CXB 3–20 keV flux to be 2.8 × 10−11 erg s−1 cm−2 deg−2, which is $\sim \! 8{{\ \rm per\ cent}}$ higher than that measured with HEAO-1 and consistent with the INTEGRAL measurement. The inferred CXB spectral shape in the 3–20 keV energy band is consistent with the canonical model of Gruber et al. We demonstrate that the spatially modulated CXB signal measured by NuSTAR is not contaminated by systematic noise and is limited by photon statistics. The measured relative scatter of the CXB intensity between different sky directions is compatible with cosmic variance, which opens new possibilities for studying CXB anisotropy over the whole sky with NuSTAR.


2020 ◽  
Vol 642 ◽  
pp. A89
Author(s):  
X. Zhang ◽  
A. Simionescu ◽  
H. Akamatsu ◽  
J. S. Kaastra ◽  
J. de Plaa ◽  
...  

Context. Previous Chandra observations of the Abell 3411-3412 merging galaxy cluster system revealed an outbound bullet-like sub-cluster in the northern part and many surface brightness edges at the southern periphery, where multiple diffuse sources are also reported from radio observations. Notably, a southeastern radio relic associated with fossil plasma from a radio galaxy and with a detected X-ray edge provides direct evidence of shock re-acceleration. The properties of the reported surface brightness features have yet to be constrained from a thermodynamic viewpoint. Aims. We use the XMM-Newton and Suzaku observations of Abell 3411-3412 to reveal the thermodynamical nature of the previously reported re-acceleration site and other X-ray surface brightness edges. We also aim to investigate the temperature profile in the low-density outskirts with Suzaku data. Methods. We performed both imaging and spectral analysis to measure the density jump and the temperature jump across multiple known X-ray surface brightness discontinuities. We present a new method to calibrate the vignetting function and spectral model of the XMM-Newton soft proton background. Archival Chandra, Suzaku, and ROSAT data are used to estimate the cosmic X-ray background and Galactic foreground levels with improved accuracy compared to standard blank sky spectra. Results. At the southeastern edge, temperature jumps revealed by both XMM-Newton and Suzaku point to a ℳ ∼ 1.2 shock, which agrees with the previous result from surface brightness fits with Chandra. The low Mach number supports the re-acceleration scenario at this shock front. The southern edge shows a more complex scenario, where a shock and the presence of stripped cold material may coincide. There is no evidence for a bow shock in front of the northwestern “bullet” sub-cluster. The Suzaku temperature profiles in the southern low-density regions are marginally higher than the typical relaxed cluster temperature profile. The measured value kT500 = 4.84 ± 0.04 ± 0.19 keV with XMM-Newton and kT500 = 5.17 ± 0.07 ± 0.13 keV with Suzaku are significantly lower than previously inferred from Chandra.


2020 ◽  
Vol 498 (4) ◽  
pp. 5532-5540
Author(s):  
Yusuke Fujimoto ◽  
Mark R Krumholz ◽  
Shu-ichiro Inutsuka ◽  
Alan P Boss ◽  
Larry R Nittler

ABSTRACT Several observations suggest that the Solar system has been located in a region affected by massive stellar feedback for at least a few Myr; these include detection of live 60Fe in deep-sea archives and Antarctic snow, the broad angular distribution of 26Al around the Galactic plane seen in all-sky γ-ray maps, and the all-sky soft X-ray background. However, our position inside the Galactic disc makes it difficult to fully characterize this environment, and our limited time baseline provides no information about its formation history or relation to large-scale galactic dynamics. We explore these questions by using an N-body + hydrodynamics simulation of a Milky-Way-like galaxy to identify stars on Sun-like orbits whose environments would produce conditions consistent with those we observe. We find that such stars are uncommon but not exceptionally rare. These stars are found predominantly near the edges of spiral arms, and lie inside kpc-scale bubbles that are created by multiple generations of star formation in the arm. We investigate the stars’ trajectories and find that the duration of the stay in the bubble ranges from 20 to 90 Myr. The duration is governed by the crossing time of stars across the spiral arm. This is generally shorter than the bubble lifetime, which is ∼100 Myr as a result of the continuous gas supply provided by the arm environment.


2020 ◽  
Vol 641 ◽  
pp. A137 ◽  
Author(s):  
I. Traulsen ◽  
A. D. Schwope ◽  
G. Lamer ◽  
J. Ballet ◽  
F. J. Carrera ◽  
...  

Context. The XMM-Newton Survey Science Centre Consortium (SSC) develops software in close collaboration with the Science Operations Centre to perform a pipeline analysis of all XMM-Newton observations. In celebration of the twentieth anniversary of the XMM-Newton launch, the SSC has compiled the fourth generation of serendipitous source catalogues, 4XMM. Aims. The catalogue described here, 4XMM-DR9s, explores sky areas that were observed more than once by XMM-Newton. These observations are bundled in groups referred to as stacks. Stacking leads to a higher sensitivity, resulting in newly discovered sources and better constrained source parameters, and unveils long-term brightness variations. Methods. The 4XMM-DR9s catalogue was constructed from simultaneous source detection on overlapping observations. As a novel feature, positional rectification was applied beforehand. Observations with all filters and suitable camera settings were included. Exposures with a high background were discarded. The high-background thresholds were determined through a statistical analysis of all exposures in each instrument configuration. The X-ray background maps used in source detection were modelled via an adaptive smoothing procedure with newly determined parameters. Source fluxes were derived for all contributing observations, irrespective of whether the source would be detectable in an individual observation. Results. The new catalogue lists the X-ray sources detected in 1329 stacks with 6604 contributing observations over repeatedly covered 300 square degrees in the sky. Most stacks are composed of two observations, the largest one comprises 352 observations. We find 288 191 sources of which 218 283 were observed several times. The number of observations of a source ranges from 1 to 40. Auxiliary products, like X-ray full-band and false-colour images, long-term X-ray light curves, and optical finding charts, are published as well. Conclusions. 4XMM-DR9s contains new detections and is considered a prime resource to explore long-term variability of X-ray sources discovered by XMM-Newton. Regular incremental releases, including new public observations, are planned.


2020 ◽  
Vol 2 (7(76)) ◽  
pp. 42-46
Author(s):  
I.K. Mirzoeva

The analysis of the x-ray background of the solar corona in the range of 2-25 Kev for three months of 2003 was carried out.the integrated energy spectrum was obtained according to the RHESSI project. Comparison with the data of the x-ray background of The earth's magnetosphere according to the XMM-Newton project in the soft range of x-rays allowed us to draw a conclusion about the common nature of the features of seasonal variations of the x-ray background of The earth's magnetosphere and the thermal x-ray background of the solar corona. The main reason for these changes is the splitting of massive photon pairs born from vacuum in the magnetic field of the solar corona and in the magnetic field of the Earth. According to the RHESSI, XMM-Newton, and Plank projects, theoretical and experimental evidence for the existence of massive photon pairs (ultralight scalar bosons) is provided.


2020 ◽  
Vol 497 (4) ◽  
pp. 4857-4883 ◽  
Author(s):  
Sylvia Ploeckinger ◽  
Joop Schaye

ABSTRACT We use the spectral synthesis code cloudy to tabulate the properties of gas for an extensive range in redshift (z = 0–9), temperature (log T[K] = 1–9.5), metallicity (log Z/Z⊙ = −4 – +0.5, Z = 0), and density ($\log n_{\mathrm{H}}[\, \mathrm{cm}^{-3}] = -8$ − +6). This therefore includes gas with properties characteristic of the interstellar, circumgalactic, and intergalactic media. The gas is exposed to a redshift-dependent UV/X-ray background, while for the self-shielded lower-temperature gas (i.e. ISM gas), an interstellar radiation field and cosmic rays are added. The radiation field is attenuated by a density- and temperature-dependent column of gas and dust. Motivated by the observed star formation law, this gas column density also determines the intensity of the interstellar radiation field and the cosmic ray density. The ionization balance, molecule fractions, cooling rates, line emissivities, and equilibrium temperatures are calculated self-consistently. We include dust, cosmic rays, and the interstellar radiation field step-by-step to study their relative impact. These publicly available tables are ideal for hydrodynamical simulations. They can be used stand alone or coupled to a non-equilibrium network for a subset of elements. The release includes a C routine to read in and interpolate the tables, as well as an easy-to-use python graphical user interface to explore the tables.


Sign in / Sign up

Export Citation Format

Share Document