scholarly journals ATLASGAL – relationship between dense star-forming clumps and interstellar masers

2020 ◽  
Vol 499 (2) ◽  
pp. 2744-2759
Author(s):  
S J Billington ◽  
J S Urquhart ◽  
C König ◽  
H Beuther ◽  
S L Breen ◽  
...  

ABSTRACT We have used catalogues from several Galactic plane surveys and dedicated observations to investigate the relationship between various maser species and Galactic star-forming clumps, as identified by the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. The maser transitions of interest are the 6.7 and 12.2-GHz methanol masers, 22.2-GHz water masers, and the masers emitting in the four ground-state hyperfine structure transitions of hydroxyl. We find clump association rates for the water, hydroxyl and methanol masers to be 56, 39, and 82 per cent, respectively, within the Galactic longitude range of 60○ > ℓ > −60○. We investigate the differences in physical parameters between maser associated clumps and the full ATLASGAL sample, and find that clumps coincident with maser emission are more compact with increased densities and luminosities. However, we find the physical conditions within the clumps are similar for the different maser species. A volume density threshold of n(H2) > 104.1 cm−3 for the 6.7-GHz methanol maser found in our previous study is shown to be consistent across for all maser species investigated. We find limits that are required for the production of maser emission to be 500 L⊙ and 6 M⊙, respectively. The evolutionary phase of maser associated clumps is investigated using the L/M ratio of clumps coincident with maser emission, and these have similar L/M ranges (∼100.2−102.7 L⊙/M⊙) regardless of the associated transitions. This implies that the conditions required for the production of maser emission only occur during a relatively narrow period during a star’s evolution. Lower limits of the statistical lifetimes for each maser species are derived, ranging from ∼0.4−2 × 104 yr and are in good agreement with the ‘straw man’ evolutionary model previously presented.

Author(s):  
S J Billington ◽  
J S Urquhart ◽  
C König ◽  
T J T Moore ◽  
D J Eden ◽  
...  

Abstract We have constructed the largest sample of dust-associated class II 6.7 GHz methanol masers yet obtained. New measurements from the the Methanol MultiBeam (MMB) Survey were combined with the 870 $\mu$m APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) and the 850 $\mu$m JCMT Plane Survey (JPS). Together with two previous studies we have now identified the host clumps for 958 methanol masers across the Galactic Plane, covering approximately 99 per cent of the MMB catalogue and increasing the known sample of dust-associated masers by over 30 per cent. We investigate correlations between the physical properties of the clumps and masers using distances and luminosities drawn from the literature. Clumps hosting methanol masers are significantly more compact and have higher volume densities than the general population of clumps. We determine a minimum volume density threshold of n(H2) ≥ 104 cm−3 for the efficient formation of intermediate- and high-mass stars. We find 6.7 GHz methanol masers are associated with a distinct part of the evolutionary process (Lbol/Mfwhm ratios of between 100.6 and 102.2) and have well defined turning on and termination points. We estimate the lower limit for the mass of embedded objects to be ≥6 M⊙ and the statistical lifetime of the methanol maser stage to be ∼3.3 × 104 yrs. This suggests that methanol masers are indeed reliable tracers of high mass star formation, and indicates that the evolutionary period traced by this marker is relatively rapid.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2009 ◽  
Vol 5 (H15) ◽  
pp. 780-780
Author(s):  
F. Schuller ◽  
K. M. Menten ◽  
F. Wyrowski ◽  
H. Beuther ◽  
S. Bontemps ◽  
...  

AbstractSubmillimeter continuum emission traces high molecular column densities and, thus, dense cloud regions in which new stars are forming. Surveys of the Galactic plane in such emission have the potential of delivering an unbiased view of high-mass star formation throughout the Milky Way. Here we present the scope, current status and first results of ATLASGAL, an ongoing survey of the Galactic plane using the Large APEX Bolometer Camera (LABOCA) on the Atacama Pathfinder Experiment (APEX) telescope at the Chajnantor plateau in Chile. Aimed at mapping 360 square degrees at 870 μm, with a uniform sensitivity of 50 mJy/beam, this survey will provide the first unbiased sample of cold dusty clumps in the Galaxy at submillimeter wavelengths. These will be targets for molecular line follow-up observations and high resolution studies with ALMA and the EVLA.


2007 ◽  
Vol 3 (S242) ◽  
pp. 184-185
Author(s):  
D. Wong-McSweeney ◽  
G. A. Fuller ◽  
S. Etoka

AbstractHigh angular resolution observations are essential for understanding the nature of maser emission and the sources which excite it. Here we present preliminary results from MERLIN observations of three methanol masers from the Toruń survey. These MERLIN observations are being analysed as part of the interferometric component of the Methanol Multibeam (MMB) Survey which is surveying the Galactic plane at |b|≤2° for 6.67 GHz methanol maser sources.


2012 ◽  
Vol 8 (S287) ◽  
pp. 296-297
Author(s):  
Jian-jun Zhou ◽  
Jarken Esimbek ◽  
Gang Wu

AbstractWater masers are good tracers of high-mass star-forming regions. Water maser VLBI observations provide a good probe for studying high-mass star formation and galactic structure. We plan to make a blind survey toward the northern Galactic plane in future years using the 25 m radio telescope of the Xinjiang Astronomical Observatory. We will select some water maser sources discovered in the survey and perform high resolution observations to study the gas kinematics close to high-mass protostars.


Author(s):  
J. R. Dawson ◽  
A. J. Walsh ◽  

AbstractSPLASH (the Southern Parkes Large-Area Survey in Hydroxyl) is a deep survey of ground-state OH absorption and emission from the Galactic Plane, as well as an unbiased search for OH masers. Key early results include the detection of a rich and complex distribution of diffuse, optically thin OH with strongly non-thermal excitation temperatures, and the detection of numerous new maser sources. The survey aims to use OH as a probe of CO-dark H2 ISM Galactic scales, with future plans including comprehensive comparisons with CO and Hi, as well as non-LTE excitation modelling of the four ground-state lines.


2012 ◽  
Vol 8 (S287) ◽  
pp. 286-287 ◽  
Author(s):  
Miranda K. Dunham ◽  

AbstractWe present preliminary results of a search for 22 GHz water masers toward 1400 star-forming regions seen in the Bolocam Galactic Plane Survey (BGPS) using the Green Bank Telescope (GBT). The BGPS is a blind survey of the Northern Galactic plane in 1.1 mm thermal dust emission that has cataloged star-forming regions at all evolutionary stages. Further information is required to determine the stage of each BGPS source. Since water masers are produced by outflows from low and high-mass star forming regions, their presence is a key component of determining whether the BGPS sources are forming stars and which evolutionary stage they are in. We present preliminary detection statistics, basic properties of the water masers, and correlations with physical properties determined from the 1.1 mm emission and ammonia observations obtained concurrently with the water masers on the GBT.


2021 ◽  
Vol 502 (2) ◽  
pp. 3012-3020
Author(s):  
Y Uno ◽  
H Imai ◽  
K Shinano ◽  
H-H Qiao ◽  
J R Dawson ◽  
...  

ABSTRACT We have modelled the 3D distribution of OH/IR stars in the Galactic plane, traced by 1612 MHz OH maser sources with classic double horned spectral profiles. We statistically analysed over 700 maser sources detected by the HI/OH/Recombination line survey of the Milky Way (THOR) and the Australia Telescope Compact Array interferometric follow-up observations of the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH). With a simple model constructed from a classical density distribution of stars and luminosity functions of OH maser sources in the Galaxy, we estimate the scale height, or the half thickness of the OH/IR star distribution along the Galactic disc to be 90–290 pc. The simple model also implies that there are ∼4000 OH/IR stars hosting 1612 MHz OH masers along the Galactic Plane. Therefore, next generation telescopes such as the Australian Square Kilometre Array Pathfinder (ASKAP) and SKA Phase 1 will detect about 80 per cent of such OH/IR stars in the Galaxy at a 10 mJy detection limit. Comparing the data of previously detected circumstellar 1612 MHz OH maser sources with those of THOR and SPLASH, the maser source lifetime is estimated to be ∼300 yr. This is likely a lower limit, since non-detections of masers in some cases could be affected by the flux variation of the maser source.


2019 ◽  
Vol 488 (4) ◽  
pp. 4638-4647 ◽  
Author(s):  
Qiang Li ◽  
Jianjun Zhou ◽  
Jarken Esimbek ◽  
Yuxin He ◽  
Willem Baan ◽  
...  

ABSTRACT A total of 188 high-mass outflows have been identified from a sample of 694 clumps from the Millimetre Astronomy Legacy Team 90 GHz survey, representing a detection rate of approximately 27 per cent. The detection rate of outflows increases from the proto-stellar stage to the H ii stage, but decreases again at the photodissociation (PDR) stage suggesting that outflows are being switched off during the PDR stage. An intimate relationship is found between outflow action and the presence of masers, and water masers appear together with 6.7 GHz methanol masers. Comparing the infall detection rate of clumps with and without outflows, we find that outflow candidates have a lower infall detection rate. Finally, we find that outflow action has some influence on the local environment and the clump itself, and this influence decreases with increasing evolutionary time as the outflow action ceases.


2020 ◽  
Vol 493 (3) ◽  
pp. 4442-4452 ◽  
Author(s):  
M S Darwish ◽  
K A Edris ◽  
A M S Richards ◽  
S Etoka ◽  
M S Saad ◽  
...  

ABSTRACT We investigate the kinematics of high-mass protostellar objects within the high-mass star-forming region IRAS 19410+2336. We performed high angular resolution observations of 6.7-GHz methanol and 22 GHz water masers using the Multi-Element Radio Linked Interferometer Network (MERLIN) and e-MERLIN interferometers. The 6.7-GHz methanol maser emission line was detected within the ∼16–27 km s−1 velocity range with a peak flux density ∼50 Jy. The maser spots are spread over ∼1.3 arcsec on the sky, corresponding to ∼2800 au at a distance of 2.16 kpc. These are the first astrometric measurements at 6.7 GHz in IRAS 19410+2336. The 22-GHz water maser line was imaged in 2005 and 2019 (the latter with good astrometry). Its velocities range from 13 to ∼29 km s−1. The peak flux density was found to be 18.7 and 13.487 Jy in 2005 and 2019, respectively. The distribution of the water maser components is up to 165 mas, ∼350 au at 2.16 kpc. We find that the Eastern methanol masers most probably trace outflows from the region of millimetre source mm1. The water masers to the West lie in a disc (flared or interacting with outflow/infall) around another more evolved millimetre source (13-s). The maser distribution suggests that the disc lies at an angle of 60° or more to the plane of the sky and the observed line-of-sight velocities then suggest an enclosed mass between 44 M⊙ and as little as 11 M⊙ if the disc is edge-on. The Western methanol masers may be infalling.


Sign in / Sign up

Export Citation Format

Share Document