scholarly journals Methanol and water maser observations separate disc and outflow sources in IRAS 19410+2336

2020 ◽  
Vol 493 (3) ◽  
pp. 4442-4452 ◽  
Author(s):  
M S Darwish ◽  
K A Edris ◽  
A M S Richards ◽  
S Etoka ◽  
M S Saad ◽  
...  

ABSTRACT We investigate the kinematics of high-mass protostellar objects within the high-mass star-forming region IRAS 19410+2336. We performed high angular resolution observations of 6.7-GHz methanol and 22 GHz water masers using the Multi-Element Radio Linked Interferometer Network (MERLIN) and e-MERLIN interferometers. The 6.7-GHz methanol maser emission line was detected within the ∼16–27 km s−1 velocity range with a peak flux density ∼50 Jy. The maser spots are spread over ∼1.3 arcsec on the sky, corresponding to ∼2800 au at a distance of 2.16 kpc. These are the first astrometric measurements at 6.7 GHz in IRAS 19410+2336. The 22-GHz water maser line was imaged in 2005 and 2019 (the latter with good astrometry). Its velocities range from 13 to ∼29 km s−1. The peak flux density was found to be 18.7 and 13.487 Jy in 2005 and 2019, respectively. The distribution of the water maser components is up to 165 mas, ∼350 au at 2.16 kpc. We find that the Eastern methanol masers most probably trace outflows from the region of millimetre source mm1. The water masers to the West lie in a disc (flared or interacting with outflow/infall) around another more evolved millimetre source (13-s). The maser distribution suggests that the disc lies at an angle of 60° or more to the plane of the sky and the observed line-of-sight velocities then suggest an enclosed mass between 44 M⊙ and as little as 11 M⊙ if the disc is edge-on. The Western methanol masers may be infalling.

2007 ◽  
Vol 3 (S242) ◽  
pp. 180-181
Author(s):  
M. A. Trinidad ◽  
S. Curiel ◽  
J. M. Torrelles ◽  
L. F. Rodríguez ◽  
V. Migenes ◽  
...  

AbstractWe present simultaneous observations of continuum (3.5 and 1.3cm) and water maser line emission (1.3cm) carried out with the VLA-A toward the high-mass object IRAS 23139+5939. We detected two radio continuum sources at 3.5cm separated by 0”5 (~2400 AU), I23139 and I23139S. Based on the observed continuum flux density and the spectral index, we suggest that I23139 is a thermal radio jet associated with a high-mass YSO. On the other hand, based on the spatio-kinematical distribution of the water masers, together with the continuum emission information, we speculate that I23139S is also a jet source powering some of the masers detected in the region.


2012 ◽  
Vol 8 (S287) ◽  
pp. 296-297
Author(s):  
Jian-jun Zhou ◽  
Jarken Esimbek ◽  
Gang Wu

AbstractWater masers are good tracers of high-mass star-forming regions. Water maser VLBI observations provide a good probe for studying high-mass star formation and galactic structure. We plan to make a blind survey toward the northern Galactic plane in future years using the 25 m radio telescope of the Xinjiang Astronomical Observatory. We will select some water maser sources discovered in the survey and perform high resolution observations to study the gas kinematics close to high-mass protostars.


2012 ◽  
Vol 8 (S287) ◽  
pp. 192-193
Author(s):  
M. A. Trinidad ◽  
T. Rodríguez ◽  
V. Migenes

AbstractWe present water maser observations toward IRAS 23033+5951 carried out with the VLA-EVLA in the A configuration. In order to study the spatio-kinematical distribution of the water masers detected in the region, we made a simple geometrical and kinematical model based on the conical equation. We find that the water masers are tracing a rotating and contracting circumstellar disk of about 110 AU around a very young source of 18 M⊙, which has not enough ionizing photons to be detected at centimeter wavelengths.


2007 ◽  
Vol 3 (S242) ◽  
pp. 152-153
Author(s):  
C. Goddi ◽  
L. Moscadelli ◽  
A. Sanna ◽  
R. Cesaroni ◽  
V. Minier

AbstractWe have conducted phase-reference VLBI observations of H2O and CH3OH masers toward two high-mass star forming regions, Sh 2-255 IR and AFGL 5142. In Sh 2-255 infrared water masers are aligned along a direction close to the orientation of a large scale H2 jet, tracing possibly shocked material in a precessing jet, or, alternatively, the disk-wind emerging from the disk atmosphere. In AFGL 5142 water masers trace expansion at the base of a protostellar jet, whilst methanol masers are more probably tracing infalling than outflowing gas. Our results suggest that water and methanol masers trace different kinematic structures in the circumstellar gas.


2007 ◽  
Vol 3 (S242) ◽  
pp. 489-493
Author(s):  
Nimesh A. Patel ◽  
Salvador Curiel ◽  
Qizhou Zhang ◽  
T. K. Sridharan ◽  
Paul T. P. Ho ◽  
...  

AbstractUsing the Submillimeter Array (SMA) we have imaged for the first time the 321.226 GHz, 1029 − 936 ortho-H2O maser emission. This is also the first detection of this line in the Cepheus A high-mass star-forming region. The 22.235 GHz, 616 – 523 water masers were also observed with the Very Large Array 43 days following the SMA observations. Three of the nine detected submillimeter maser spots are associated with the centimeter masers spatially as well as kinematically, while there are 36 22 GHz maser spots without corresponding submillimeter masers. In the HW2 source, both the 321 GHz and 22 GHz masers occur within the region of ~1″ which includes the disk-jet system, but the position angles of the roughly linear structures traced by the masers indicate that the 321 GHz masers are along the jet while the 22 GHz masers are perpendicular to it. We interpret the submillimeter masers in Cepheus A to be tracing significantly hotter regions (600~2000 K) than the centimeter masers.


2017 ◽  
Vol 13 (S336) ◽  
pp. 315-316
Author(s):  
Miguel A. Trinidad ◽  
Tatiana Rodríguez-Esnard ◽  
Josep M. Masqué

AbstractWe present radio continuum and water maser observations toward the high-mass star-forming region IRAS 23151+5912 from the VLA and VLBA archive, respectively. We detected a continuum source, which seems to be a hypercompact HII region. In addition, a water maser group about 4″ south from the continuum source was detected. We present preliminary results of the analysis of three observations epochs of the water masers, which are tracing an arc-like structure. However, its kinematics is quite complex, since while one section of the structure seems to be moving away from one center, another section seems to be approaching.


2010 ◽  
Vol 517 ◽  
pp. A56 ◽  
Author(s):  
F. Fontani ◽  
R. Cesaroni ◽  
R. S. Furuya

2018 ◽  
Vol 56 (1) ◽  
pp. 41-82 ◽  
Author(s):  
Frédérique Motte ◽  
Sylvain Bontemps ◽  
Fabien Louvet

This review examines the state-of-the-art knowledge of high-mass star and massive cluster formation, gained from ambitious observational surveys, which acknowledges the multiscale characteristics of these processes. After a brief overview of theoretical models and main open issues, we present observational searches for the evolutionary phases of high-mass star formation, first among high-luminosity sources and more recently among young massive protostars and the elusive high-mass prestellar cores. We then introduce the most likely evolutionary scenario for high-mass star formation, which emphasizes the link of high-mass star formation to massive cloud and cluster formation. Finally, we introduce the first attempts to search for variations of the star-formation activity and cluster formation in molecular cloud complexes in the most extreme star-forming sites and across the Milky Way. The combination of Galactic plane surveys and high–angular resolution images with submillimeter facilities such as Atacama Large Millimeter Array (ALMA) are prerequisites to make significant progress in the forthcoming decade.


2012 ◽  
Vol 8 (S287) ◽  
pp. 190-191
Author(s):  
K. Sugiyama ◽  
K. Fujisawa ◽  
N. Shino ◽  
A. Doi

AbstractWe present the radial velocity acceleration of the 6.7 GHz methanol maser in a high-mass star-forming region Monoceros R2 (Mon R2). The methanol maser is associated with an infrared source IRS3. The methanol maser of Mon R2 shows at least three spectral features having radial velocities (Vlsr) of 10.8, 12.7, and 13.2 km s−1. The radial velocity of a feature at Vlsr = 12.7 km s−1 has changed during ten years from Aug. 1999 to Oct. 2009, corresponding to an acceleration of 0.08 km s−1 yr−1. We observed the 6.7 GHz methanol masers of Mon R2 in Oct. 2008 using the Japanese VLBI Network (JVN). Compared with the previous VLBI image obtained in Nov. 1998 using the European VLBI Network (EVN), the maser feature at Vlsr = 12.7 km s−1 showed relative proper motions of ~2.5 mas yr−1 (about 10 km s−1 at 0.83 kpc) toward the intensity peak of IRS3. The radial velocity acceleration could be caused by an inflow from a disk or envelope around a high-mass young stellar object (YSO) at IRS3.


Sign in / Sign up

Export Citation Format

Share Document