scholarly journals Diffusive acceleration in relativistic shocks: particle feedback

2020 ◽  
Vol 501 (1) ◽  
pp. 329-336
Author(s):  
Yotam Nagar ◽  
Uri Keshet

ABSTRACT The spectral index s of high-energy particles diffusively accelerated in a non-magnetized relativistic shock, such as in a γ-ray burst afterglow, depends on the unknown angular diffusion function $\mathcal {D}$, which itself depends on the particle distribution function f if acceleration is efficient. We develop a relaxation code to compute s and f for an arbitrary functional $\mathcal {D}$ that depends on f. A local $\mathcal {D}(f)$ dependence is motivated and shown, when rising (falling) upstream, to soften (harden) s with respect to the isotropic case, shift the angular distribution towards upstream (downstream) directions, and strengthen (weaken) the particle confinement to the shock; an opposite effect on s is found downstream. However, variations in s remain modest even when $\mathcal {D}$ is a strong function of f, so the standard, isotropic-diffusion results remain approximately applicable unless $\mathcal {D}$ is both highly anisotropic and not a local function of f. A mild, ∼0.1 softening of s, in both 2D and 3D, when $\mathcal {D}(f)$ rises sufficiently fast, may be realized in ab initio simulations.

2008 ◽  
Vol 17 (10) ◽  
pp. 1819-1826
Author(s):  
PAUL DEMPSEY ◽  
PETER DUFFY

We investigate the acceleration and simultaneous radiative losses of electrons in the vicinity of relativistic shocks. Particles undergo pitch angle diffusion, gaining energy as they cross the shock by the Fermi mechanism and also emitting synchrotron radiation in the ambient magnetic field. Using a semi-analytic approach we find that the cut-off energy differs greatly from the nonrelativistic approximation. Our results also show that, while low energy particles remain nearly isotropic, high energy particles downstream of the shock have a large degree of anisotropy which increases with the Lorentz factor of the shock. The implications for the synchrotron emission of relativistic jets, such as those in microquasars and blazars, are discussed.


Author(s):  
Honoka TODA ◽  
Wataru MIYAKE ◽  
Takefumi MITANI ◽  
Takeshi TAKASHIMA ◽  
Yoshizumi MIYOSHI ◽  
...  

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


1998 ◽  
Vol 57 (19) ◽  
pp. 12564-12572 ◽  
Author(s):  
Che-Chen Chang ◽  
Jiin-Yun Hsieh

Sign in / Sign up

Export Citation Format

Share Document