scholarly journals Is there enough star formation in simulated protoclusters?

2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.

2020 ◽  
Vol 493 (1) ◽  
pp. L6-L10 ◽  
Author(s):  
Petra N Tang ◽  
J J Eldridge ◽  
Elizabeth R Stanway ◽  
J C Bray

ABSTRACT We compare the impacts of uncertainties in both binary population synthesis models and the cosmic star formation history on the predicted rates of gravitational wave (GW) compact binary merger events. These uncertainties cause the predicted rates of GW events to vary by up to an order of magnitude. Varying the volume-averaged star formation rate density history of the Universe causes the weakest change to our predictions, while varying the metallicity evolution has the strongest effect. Double neutron star merger rates are more sensitive to assumed neutron star kick velocity than the cosmic star formation history. Varying certain parameters affects merger rates in different ways depending on the mass of the merging compact objects; thus some of the degeneracy may be broken by looking at all the event rates rather than restricting ourselves to one class of mergers.


2012 ◽  
Vol 10 (H16) ◽  
pp. 129-129
Author(s):  
Beatriz H. F. Ramos ◽  
Karín Menéndez-Delmestre ◽  
Taehyun Kim ◽  
Kartik Sheth ◽  

AbstractLocal early-type galaxies (ETGs), despite typically being associated to old stellar populations and passive evolution, have been in some cases observed to present peculiarities in their stellar structure, like disks and shells (e.g., Kormendy et al.1997, Rix, Carollo & Freeman 1999). Moreover, it has been observed that ETGs with such tidal features may present UV emission (Rampazzo et al.2007, Salim & Rich 2010). These properties make them relevant constraints to galaxy formation models. We are analysing the structure of nearby ETGs observed in the Spitzer Survey of Stellar Structure in Galaxies (S4G; Sheth et al.2010), which comprises the largest mid-IR survey of galaxies in the local Universe. We perform a 2D GALFIT decomposition of the 3.6μm images of 146 ETGs and examine their residual images. We identify tidal features in 17% of these, suggesting that a non-negligible ETGs fraction may have experienced (after the formation of the bulk of their stellar budget) merger events that have left signatures (Canalizo et al.2007). For 6 of these peculiar ETGs, we also applied GALFIT decomposition to public GALEX/UV and SDSS/optical images. With measurements in multiple bands, we applied SED fitting techniques to estimate star formation rates (SFR) and stellar masses for the galaxies and their tidal features. We find that these 6 peculiar ETGs present masses in agreement with the population of non-peculiar ETGs. However, SFRs are higher than what has been measured for the average ETG population (Shapiro et al.2010, SDSS MPA-JHU catalog). Based on the Kaviraj (2010) relation, we find that for these peculiar ETGs the estimated age of the most recent star formation event is less than 3Gyrs. Despite this indication of recent star formation, we have not found evidence of prominent UV emission in the tidal features (Marino et al.2010). We are currently extending our work to the full sample of peculiar ETGs identified in our sample.


2008 ◽  
Vol 4 (S258) ◽  
pp. 51-60
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Noelia E. D. Noël ◽  
Antonio Aparicio ◽  
Sebastián L. Hidalgo ◽  
...  

AbstractThe star formation history of the Magellanic Clouds, including the old and intermediate-age star formation events, can be studied reliably and in detail through color-magnitude diagrams reaching the oldest main sequence turnoffs. This paper reviews our current understanding of the Magellanic Clouds' star formation histories and discusses the impact of this information on general studies of galaxy formation and evolution.


2018 ◽  
Vol 14 (S344) ◽  
pp. 271-273
Author(s):  
Ruixiang Chang ◽  
Xiaoyu Kang ◽  
Fenghui Zhang

AbstractUnderstanding the effect of environment on galaxy formation and evolution is one of the hot topics in extragalactic astronomy. Here we constructed a chemical evolution model of disk galaxies. By comparing the model predictions with the observed profiles, we investigated the star formation history of M33, NGC 300 and NGC 2403. We found that M33 has much longer infall timescale than NGC 300 and NGC 2403, and the star formation process of M33 is still active at later phase. Our results suggested that the cold gas supply of M33 is sufficient in the present-day, which may originate from the HI bridge between M33 and M31. In other words, we argue that the local environment plays an important role on the star formation history of a galaxy, at least for M33.


1999 ◽  
Vol 118 (5) ◽  
pp. 2245-2261 ◽  
Author(s):  
Carme Gallart ◽  
Wendy L. Freedman ◽  
Antonio Aparicio ◽  
Giampaolo Bertelli ◽  
Cesare Chiosi

2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


2011 ◽  
Vol 141 (4) ◽  
pp. 106 ◽  
Author(s):  
Bradley A. Jacobs ◽  
R. Brent Tully ◽  
Luca Rizzi ◽  
Igor D. Karachentsev ◽  
Kristin Chiboucas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document