scholarly journals Star Formation History of Early-Type Galaxies with Tidal Debris in the S4G

2012 ◽  
Vol 10 (H16) ◽  
pp. 129-129
Author(s):  
Beatriz H. F. Ramos ◽  
Karín Menéndez-Delmestre ◽  
Taehyun Kim ◽  
Kartik Sheth ◽  

AbstractLocal early-type galaxies (ETGs), despite typically being associated to old stellar populations and passive evolution, have been in some cases observed to present peculiarities in their stellar structure, like disks and shells (e.g., Kormendy et al.1997, Rix, Carollo & Freeman 1999). Moreover, it has been observed that ETGs with such tidal features may present UV emission (Rampazzo et al.2007, Salim & Rich 2010). These properties make them relevant constraints to galaxy formation models. We are analysing the structure of nearby ETGs observed in the Spitzer Survey of Stellar Structure in Galaxies (S4G; Sheth et al.2010), which comprises the largest mid-IR survey of galaxies in the local Universe. We perform a 2D GALFIT decomposition of the 3.6μm images of 146 ETGs and examine their residual images. We identify tidal features in 17% of these, suggesting that a non-negligible ETGs fraction may have experienced (after the formation of the bulk of their stellar budget) merger events that have left signatures (Canalizo et al.2007). For 6 of these peculiar ETGs, we also applied GALFIT decomposition to public GALEX/UV and SDSS/optical images. With measurements in multiple bands, we applied SED fitting techniques to estimate star formation rates (SFR) and stellar masses for the galaxies and their tidal features. We find that these 6 peculiar ETGs present masses in agreement with the population of non-peculiar ETGs. However, SFRs are higher than what has been measured for the average ETG population (Shapiro et al.2010, SDSS MPA-JHU catalog). Based on the Kaviraj (2010) relation, we find that for these peculiar ETGs the estimated age of the most recent star formation event is less than 3Gyrs. Despite this indication of recent star formation, we have not found evidence of prominent UV emission in the tidal features (Marino et al.2010). We are currently extending our work to the full sample of peculiar ETGs identified in our sample.

2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.


2006 ◽  
Vol 636 (1) ◽  
pp. 115-133 ◽  
Author(s):  
A. Pasquali ◽  
I. Ferreras ◽  
N. Panagia ◽  
E. Daddi ◽  
S. Malhotra ◽  
...  

2015 ◽  
Author(s):  
M. Siudek ◽  
K. Malek ◽  
B. Garilli ◽  
M. Scodeggio ◽  
A. Fritz ◽  
...  

2007 ◽  
Vol 656 (1) ◽  
pp. 206-216 ◽  
Author(s):  
P. Panuzzo ◽  
O. Vega ◽  
A. Bressan ◽  
L. Buson ◽  
M. Clemens ◽  
...  

2009 ◽  
Vol 394 (4) ◽  
pp. 1713-1720 ◽  
Author(s):  
Sugata Kaviraj ◽  
Sebastien Peirani ◽  
Sadegh Khochfar ◽  
Joseph Silk ◽  
Scott Kay

2007 ◽  
Vol 3 (S245) ◽  
pp. 195-200
Author(s):  
S. Kaviraj ◽  
S. K. Yi ◽  
E. Gawiser ◽  
P. G. van Dokkum ◽  
S. Khochfar ◽  
...  

AbstractWe combine deep UBV RIzJK photometry from the MUSYC survey with redshifts from the COMBO-17 survey to study the rest-frame ultraviolet (UV) properties of 674 high-redshift (0.5 < z < 1) early-type galaxies, drawn from the Extended Chandra Deep Field South (E-CDFS). Galaxy morphologies are determined through visual inspection of Hubble Space Telescope (HST) images taken from the GEMS survey. We harness the sensitivity of the UV to young (<1 Gyrs old) stars to quantify the recent star formation history of the early-type population. We find compelling evidence that early-types of all luminosities form stars over the lifetime of the Universe, although the bulk of their star formation is already complete at high redshift. Luminous (−23 < M(V) < −20.5) early-types form 10-15 percent of their mass after z = 1, while their less luminous (M(V) > −20.5) counterparts form 30-60 percent of their mass in the same redshift range.


2008 ◽  
Vol 4 (S258) ◽  
pp. 51-60
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Noelia E. D. Noël ◽  
Antonio Aparicio ◽  
Sebastián L. Hidalgo ◽  
...  

AbstractThe star formation history of the Magellanic Clouds, including the old and intermediate-age star formation events, can be studied reliably and in detail through color-magnitude diagrams reaching the oldest main sequence turnoffs. This paper reviews our current understanding of the Magellanic Clouds' star formation histories and discusses the impact of this information on general studies of galaxy formation and evolution.


2011 ◽  
Vol 7 (S284) ◽  
pp. 244-247 ◽  
Author(s):  
Richard M. McDermid ◽  
Katherine Alatalo ◽  
Leo Blitz ◽  
Maxime Bois ◽  
Frédéric Bournaud ◽  
...  

AbstractWe present an exploration of the integrated stellar populations of early-type galaxies (ETGs) from the ATLAS3D survey. We use two approaches: firstly the application of line-indices interpreted through single stellar population (SSP) models, which provide a single value of age, metallicity and abundance ratio. And secondly, by fitting a linear combination of SSP spectra to our data, smoothly weighted in the free parameters of age and metallicity, thereby inferring a star-formation history of these galaxies. Despite the significant differences in these approaches, we obtain generally consistent results, such that galaxies that are more massive appear older with enhanced abundance ratios using line indices, and have shorter star-formation histories weighted to early times. We highlight two limitations of the index-SSP approach. Firstly the SSP-equivalent ages belie the fact that ETGs are overwhelmingly composed of ancient stars. Secondly, the young stellar contributions implied in our star formation histories are required to obtain realistic UV-optical colours. We remark that, even fitting solar-abundance models, we can recover a star-formation duration that correlates with the measured alpha-enhancement, in agreement with other recent work.


2018 ◽  
Vol 14 (S344) ◽  
pp. 271-273
Author(s):  
Ruixiang Chang ◽  
Xiaoyu Kang ◽  
Fenghui Zhang

AbstractUnderstanding the effect of environment on galaxy formation and evolution is one of the hot topics in extragalactic astronomy. Here we constructed a chemical evolution model of disk galaxies. By comparing the model predictions with the observed profiles, we investigated the star formation history of M33, NGC 300 and NGC 2403. We found that M33 has much longer infall timescale than NGC 300 and NGC 2403, and the star formation process of M33 is still active at later phase. Our results suggested that the cold gas supply of M33 is sufficient in the present-day, which may originate from the HI bridge between M33 and M31. In other words, we argue that the local environment plays an important role on the star formation history of a galaxy, at least for M33.


Sign in / Sign up

Export Citation Format

Share Document