line emission
Recently Published Documents


TOTAL DOCUMENTS

1906
(FIVE YEARS 283)

H-INDEX

72
(FIVE YEARS 9)

2022 ◽  
Vol 17 (01) ◽  
pp. C01032
Author(s):  
J. Karhunen ◽  
A. Holm ◽  
B. Lomanowski ◽  
V. Solokha ◽  
S. Aleiferis ◽  
...  

Abstract A previously presented Monte Carlo method for estimating local plasma conditions in 2D based on intensity ratios of deuterium Balmer D α , D γ and D ɛ lines was amended to consider also the D α and D γ emission contributions arising from molecular processes. The obtained estimates were used to infer the molecular divertor density with the help of the molecular databases of EIRENE. The method was benchmarked against EDGE2D-EIRENE simulations and observed to reproduce the molecularly induced emission fractions and the molecular divertor densities primarily within 25% of the references. Experimental analysis of a JET L-mode density scan suggested molecularly induced D α and D γ contributions of up to 60–70% and 20%, respectively, during the process of detachment. The independent estimates of the molecular divertor density inferred from the obtained molecularly induced D α and D γ intensities agree within uncertainties with each other. Both estimates show the molecular density increasing up to approximately 1.0–2.0 × 1020 m−3 at the outer strike point in deep detachment with its ratio to the local electron density agreeing with EDGE2D-EIRENE predictions within the scatter of the experimental data.


2022 ◽  
Vol 924 (1) ◽  
pp. 4
Author(s):  
Olivia H. Wilkins ◽  
P. Brandon Carroll ◽  
Geoffrey A. Blake

Abstract The Orion Kleinmann-Low nebula (Orion KL) is notoriously complex and exhibits a range of physical and chemical components. We conducted high-angular-resolution (subarcsecond) observations of 13CH3OH ν = 0 (∼0.″3 and ∼0.″7) and CH3CN ν 8 = 1 (∼0.″2 and ∼0.″9) line emission with the Atacama Large Millimeter/submillimeter Array (ALMA) to investigate Orion KL’s structure on small spatial scales (≤350 au). Gas kinematics, excitation temperatures, and column densities were derived from the molecular emission via a pixel-by-pixel spectral line fitting of the image cubes, enabling us to examine the small-scale variation of these parameters. Subregions of the Hot Core have a higher excitation temperature in a 0.″2 beam than in a 0.″9 beam, indicative of possible internal sources of heating. Furthermore, the velocity field includes a bipolar ∼7–8 km s−1 feature with a southeast–northwest orientation against the surrounding ∼4–5 km s−1 velocity field, which may be due to an outflow. We also find evidence of a possible source of internal heating toward the Northwest Clump, since the excitation temperature there is higher in a smaller beam versus a larger beam. Finally, the region southwest of the Hot Core (Hot Core-SW) presents itself as a particularly heterogeneous region bridging the Hot Core and Compact Ridge. Additional studies to identify the (hidden) sources of luminosity and heating within Orion KL are necessary to better understand the nebula and its chemistry.


2021 ◽  
Author(s):  
◽  
Jeremy Moss

<p>While spectroscopy is the standard method of measuring the redshift of luminous objects, it is a time-intensive technique, requiring, in some cases, hours of telescope time for a single source. Additionally, spectroscopy favours brighter objects, and therefore introduces an intrinsic bias towards luminous or closer sources. A simple method of estimating the redshift through photometry would prove invaluable to forthcoming surveys on the next generation of large radio telescopes, as well as alleviating the inherent bias towards the most optically bright sources. While there is a well-established correlation between the near-infrared K-band magnitude and redshift for galaxies, we find that the K-z relation breaks down for samples dominated by quasi-stellar objects (QSOs).  Current methods of estimating photometric redshift rely either on template spectra, which requires a high number of infrared photometry points, or computationally intensive machine learning methods.  Using photometric data from the Sloan Digital Sky Survey (SDSS) we investigate the relationship between combinations of magnitudes of a group of quasars, and their redshift. We find a high correlation between the colour relation (I-W2)/(W3-U) and redshift for a group of broad-line emission sources from the SDSS, and we conclude that this could be a robust estimator of the redshift.</p>


2021 ◽  
Author(s):  
◽  
Jeremy Moss

<p>While spectroscopy is the standard method of measuring the redshift of luminous objects, it is a time-intensive technique, requiring, in some cases, hours of telescope time for a single source. Additionally, spectroscopy favours brighter objects, and therefore introduces an intrinsic bias towards luminous or closer sources. A simple method of estimating the redshift through photometry would prove invaluable to forthcoming surveys on the next generation of large radio telescopes, as well as alleviating the inherent bias towards the most optically bright sources. While there is a well-established correlation between the near-infrared K-band magnitude and redshift for galaxies, we find that the K-z relation breaks down for samples dominated by quasi-stellar objects (QSOs).  Current methods of estimating photometric redshift rely either on template spectra, which requires a high number of infrared photometry points, or computationally intensive machine learning methods.  Using photometric data from the Sloan Digital Sky Survey (SDSS) we investigate the relationship between combinations of magnitudes of a group of quasars, and their redshift. We find a high correlation between the colour relation (I-W2)/(W3-U) and redshift for a group of broad-line emission sources from the SDSS, and we conclude that this could be a robust estimator of the redshift.</p>


2021 ◽  
Vol 922 (2) ◽  
pp. 236
Author(s):  
Qiong Li ◽  
Ran Wang ◽  
Helmut Dannerbauer ◽  
Zheng Cai ◽  
Bjorn Emonts ◽  
...  

Abstract The MAMMOTH-1 nebula at z = 2.317 is an enormous Lyα nebula (ELAN) extending to a ∼440 kpc scale at the center of the extreme galaxy overdensity BOSS 1441. In this paper, we present observations of the CO(3 − 2) and 250 GHz dust-continuum emission from MAMMOTH-1 using the IRAM NOrthern Extended Millimeter Array. Our observations show that CO(3 − 2) emission in this ELAN has not extended widespread emission into the circum- and inter-galactic media. We also find a remarkable concentration of six massive galaxies in CO(3 − 2) emission in the central ∼100 kpc region of the ELAN. Their velocity dispersions suggest a total halo mass of M 200c ∼ 1013.1 M ⊙, marking a possible protocluster core associated with the ELAN. The peak position of the CO(3 − 2) line emission from the obscured AGN is consistent with the location of the intensity peak of MAMMOTH-1 in the rest-frame UV band. Its luminosity line ratio between the CO(3 − 2) and CO(1 − 0)r 3,1 is 0.61 ± 0.17. The other five galaxies have CO(3 − 2) luminosities in the range of (2.1–7.1) × 109 K km s−1 pc2, with the star-formation rates derived from the 250 GHz continuum of (<36)–224 M ⊙ yr−1. Follow-up spectroscopic observations will further confirm more member galaxies and improve the accuracy of the halo mass estimation.


2021 ◽  
Vol 923 (2) ◽  
pp. 147
Author(s):  
Kaho Morii ◽  
Patricio Sanhueza ◽  
Fumitaka Nakamura ◽  
James M. Jackson ◽  
Shanghuo Li ◽  
...  

Abstract With a mass of ∼1000 M ⊙ and a surface density of ∼0.5 g cm−2, G023.477+0.114, also known as IRDC 18310-4, is an infrared dark cloud (IRDC) that has the potential to form high-mass stars and has been recognized as a promising prestellar clump candidate. To characterize the early stages of high-mass star formation, we have observed G023.477+0.114 as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Survey of 70 μm Dark High-mass Clumps in Early Stages. We have conducted ∼1.″2 resolution observations with ALMA at 1.3 mm in dust continuum and molecular line emission. We have identified 11 cores, whose masses range from 1.1 to 19.0 M ⊙. Ignoring magnetic fields, the virial parameters of the cores are below unity, implying that the cores are gravitationally bound. However, when magnetic fields are included, the prestellar cores are close to virial equilibrium, while the protostellar cores remain sub-virialized. Star formation activity has already started in this clump. Four collimated outflows are detected in CO and SiO. H2CO and CH3OH emission coincide with the high-velocity components seen in the CO and SiO emission. The outflows are randomly oriented for the natal filament and the magnetic field. The position-velocity diagrams suggest that episodic mass ejection has already begun even in this very early phase of protostellar formation. The masses of the identified cores are comparable to the expected maximum stellar mass that this IRDC could form (8–19 M ⊙). We explore two possibilities on how IRDC G023.477+0.114 could eventually form high-mass stars in the context of theoretical scenarios.


2021 ◽  
Vol 923 (2) ◽  
pp. 188
Author(s):  
Dongwoo T. Chung ◽  
Patrick C. Breysse ◽  
Håvard T. Ihle ◽  
Hamsa Padmanabhan ◽  
Marta B. Silva ◽  
...  

Abstract Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project and the CO(1–0) line-intensity field at z ∼ 3 serving as our primary case study, we expect a ∼10% attenuation of the spherically averaged power spectrum on average at relevant scales of k ≈ 0.2–0.3 Mpc−1 compared to ∼25% for the interferometric Millimetre-wave Intensity Mapping Experiment targeting shot noise from CO lines at z ∼ 1–5 at scales of k ≳ 1 Mpc−1. We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening and find that while an approximation using a single effective velocity scale is sufficient for spherically averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.


2021 ◽  
Vol 923 (1) ◽  
pp. L7
Author(s):  
Kana Moriwaki ◽  
Naoki Yoshida

Abstract Line-intensity mapping is emerging as a novel method that can measure the collective intensity fluctuations of atomic/molecular line emission from distant galaxies. Several observational programs with various wavelengths are ongoing and planned, but there remains a critical problem of line confusion; emission lines originating from galaxies at different redshifts are confused at the same observed wavelength. We devise a generative adversarial network that extracts designated emission-line signals from noisy three-dimensional data. Our novel network architecture allows two input data, in which the same underlying large-scale structure is traced by two emission lines of H α and [Oiii], so that the network learns the relative contributions at each wavelength and is trained to decompose the respective signals. After being trained with a large number of realistic mock catalogs, the network is able to reconstruct the three-dimensional distribution of emission-line galaxies at z = 1.3−2.4. Bright galaxies are identified with a precision of 84%, and the cross correlation coefficients between the true and reconstructed intensity maps are as high as 0.8. Our deep-learning method can be readily applied to data from planned spaceborne and ground-based experiments.


2021 ◽  
Vol 923 (2) ◽  
pp. 141
Author(s):  
Chuan-Jui Li ◽  
You-Hua Chu ◽  
John C. Raymond ◽  
Bruno Leibundgut ◽  
Ivo R. Seitenzahl ◽  
...  

Abstract Balmer-dominated shells in supernova remnants (SNRs) are produced by collisionless shocks advancing into a partially neutral medium and are most frequently associated with Type Ia supernovae. We have analyzed Hubble Space Telescope (HST) images and Very Large Telescope (VLT)/Multi-Unit Spectroscopic Explorer (MUSE) or AAT/Wide Field Integral Spectrograph observations of five Type Ia SNRs containing Balmer-dominated shells in the LMC: 0509–67.5, 0519–69.0, N103B, DEM L71, and 0548–70.4. Contrary to expectations, we find bright forbidden-line emission from small dense knots embedded in four of these SNRs. The electron densities in some knots are higher than 104 cm−3. The size and density of these knots are not characteristic for interstellar medium—they most likely originate from a circumstellar medium ejected by the SN progenitor. Physical property variations of dense knots in the SNRs appear to reflect an evolutionary effect. The recombination timescales for high densities are short, and HST images of N103B taken 3.5 yr apart already show brightness changes in some knots. VLT/MUSE observations detect [Fe xiv] line emission from reverse shocks into SN ejecta as well as forward shocks into the dense knots. Faint [O iii] line emission is also detected from the Balmer shell in 0519–69.0, N103B, and DEM L71. We exclude the postshock origin because the [O iii] line is narrow. For the preshock origin, we considered three possibilities: photoionization precursor, cosmic-ray precursor, and neutral precursor. We conclude that the [O iii] emission arises from oxygen that has been photoionized by [He ii] λ304 photons and is then collisionally excited in a shock precursor heated mainly by cosmic rays.


Sign in / Sign up

Export Citation Format

Share Document