Annual Review of Astronomy and Astrophysics
Latest Publications


TOTAL DOCUMENTS

991
(FIVE YEARS 44)

H-INDEX

232
(FIVE YEARS 14)

Published By Annual Reviews

1545-4282, 0066-4146

2021 ◽  
Vol 59 (1) ◽  
pp. 247-289
Author(s):  
Lam Hui

We review the physics and phenomenology of wave dark matter: a bosonic dark matter candidate lighter than about 30 eV. Such particles have a de Broglie wavelength exceeding the average interparticle separation in a galaxy like the Milky Way and are, thus, well described as a set of classical waves. We outline the particle physics motivations for such particles, including the quantum chromodynamics axion as well as ultralight axion-like particles such as fuzzy dark matter. The wave nature of the dark matter implies a rich phenomenology: ▪  Wave interference gives rise to order unity density fluctuations on de Broglie scale in halos. One manifestation is vortices where the density vanishes and around which the velocity circulates. There is one vortex ring per de Broglie volume on average. ▪  For sufficiently low masses, soliton condensation occurs at centers of halos. The soliton oscillates and undergoes random walks, which is another manifestation of wave interference. The halo and subhalo abundance is expected to be suppressed at small masses, but the precise prediction from numerical wave simulations remains to be determined. ▪  For ultralight ∼10−22 eV dark matter, the wave interference substructures can be probed by tidal streams or gravitational lensing. The signal can be distinguished from that due to subhalos by the dependence on stream orbital radius or image separation. ▪  Axion detection experiments are sensitive to interference substructures for wave dark matter that is moderately light. The stochastic nature of the waves affects the interpretation of experimental constraints and motivates the measurement of correlation functions. Current constraints and open questions, covering detection experiments and cosmological, galactic, and black hole observations, are discussed.


2021 ◽  
Vol 59 (1) ◽  
pp. v-vi
Author(s):  
Ewine F. van Dishoeck ◽  
Robert C. Kennicutt

2021 ◽  
Vol 59 (1) ◽  
pp. 203-246
Author(s):  
Brett Gladman ◽  
Kathryn Volk

We provide a nonspecialist overview of the current state of understanding of the structure and origin of our Solar System's transneptunian region (often called the Kuiper Belt), highlighting perspectives on planetesimal formation, planet migration, and the contextual relationship with protoplanetary disks. We review the dynamical features of the transneptunian populations and their associated differences in physical properties. We describe aspects of our knowledge that have advanced in the past two decades and then move on to current issues of research interest (which thus still have unclear resolution). ▪  The current transneptunian population consists of both implanted and primordial objects. ▪  The primordial (aka cold) population is a largely unaltered remnant of the population that formed in situ. ▪  The reason for the primordial cold population's current outer edge is unexplained. ▪  The large semimajor-axis population now dynamically detached from Neptune is critical for understanding the Solar System's history. ▪  Observational constraints on the number and orbits of distant objects remain poor.


Author(s):  
Hugh S. Hudson

The Carrington event in 1859, a solar flare with an associated geomagnetic storm, has served as a prototype of possible superflare occurrence on the Sun. Recent geophysical (14C signatures in tree rings) and precise time-series photometry [the bolometric total solar irradiance (TSI) for the Sun, and the broadband photometry from Kepler and Transiting Exoplanet Survey Satellite, for the stars] have broadened our perspective on extreme events and the threats that they pose for Earth and for Earth-like exoplanets. This review assesses the mutual solar and/or stellar lessons learned and the status of our theoretical understanding of the new data, both stellar and solar, as they relate to the physics of the Carrington event. The discussion includes the event's implied coronal mass ejection, its potential “solar cosmic ray” production, and the observed geomagnetic disturbances based on the multimessenger information already available in that era. Taking the Carrington event as an exemplar of the most extreme solar event, and in the context of our rich modern knowledge of solar flare and/or coronal mass ejection events, we discuss the aspects of these processes that might be relevant to activity on solar-type stars, and in particular their superflares. ▪ The Carrington flare of 1859, though powerful, did not significantly exceed the magnitudes of the greatest events observed in the modern era. ▪ Stellar “superflare” events on solar-type stars may share common paradigms, and also suggest the possibility of a more extreme solar event at some time in the future. ▪ We benefit from comparing the better-known microphysics of solar flares and CMEs with the diversity of related stellar phenomena. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Leen Decin

A multitude of phenomena—such as the chemical enrichment of the Universe, the mass spectrum of planetary nebulae, white dwarfs and gravitational wave progenitors, the frequency distribution of supernovae, the fate of exoplanets, etc.—are highly regulated by the amounts of mass that stars expel through a powerful wind. For more than half a century, these winds of cool aging stars have been interpreted within the common interpretive framework of 1D models. I here discuss how that framework now appears to be highly problematic. • Current 1D mass-loss rate formulae differ by orders of magnitude, rendering contemporary stellar evolution predictions highly uncertain. These stellar winds harbor 3D complexities that bridge 23 orders of magnitude in scale, ranging from the nanometer up to thousands of astronomical units. We need to embrace and understand these 3D spatial realities if we aim to quantify mass loss and assess its effect on stellar evolution. We therefore need to gauge the following: • The 3D life of molecules and solid-state aggregates: The gas-phase clusters that form the first dust seeds are not yet identified. This limits our ability to predict mass-loss rates using a self-consistent approach. • The emergence of 3D clumps: They contribute in a nonnegligible way to the mass loss, although they seem of limited importance for the wind-driving mechanism. • The 3D lasting impact of a (hidden) companion: Unrecognized binary interaction has biased previous mass-loss rate estimates toward values that are too large. Only then will it be possible to drastically improve our predictive power of the evolutionary path in 4D (classical) spacetime of any star. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Laura Chomiuk ◽  
Brian D. Metzger ◽  
Ken J. Shen

We survey our understanding of classical novae—nonterminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude the following: ▪ The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the nova's bolometric luminosity. ▪ The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. ▪ The complexity of the mass ejection leads to gamma-ray-producing shocks internal to the nova ejecta. When gamma rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. ▪ Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantly to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Christopher S. Reynolds

The spin of a black hole is an important quantity to study, providing a window into the processes by which a black hole was born and grew. Furthermore, spin can be a potent energy source for powering relativistic jets and energetic particle acceleration. In this review, I describe the techniques currently used to detect and measure the spins of black holes. It is shown that: ▪ Two well-understood techniques, X-ray reflection spectroscopy and thermal continuum fitting, can be used to measure the spins of black holes that are accreting at moderate rates. There is a rich set of other electromagnetic techniques allowing us to extend spin measurements to lower accretion rates. ▪ Many accreting supermassive black holes are found to be rapidly spinning, although a population of more slowly spinning black holes emerges at masses above M > 3 × 107 M⊙ expected from recent structure formation models. ▪ Many accreting stellar-mass black holes in X-ray binary systems are rapidly spinning and must have been born in this state. ▪ The advent of gravitational wave astronomy has enabled the detection of spin effects in merging binary black holes. Most of the premerger black holes are found to be slowly spinning, a notable exception being an object that may itself be a merger product. ▪ The stark difference in spins between the black hole X-ray binary and the binary black hole populations shows that there is a diversity of formation mechanisms. Given the array of new electromagnetic and gravitational wave capabilities currently being planned, the future of black hole spin studies is bright. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Wei Zhu ◽  
Subo Dong

In the past few years, significant advances have been made in understanding the distributions of exoplanet populations and the architecture of planetary systems. We review the recent progress of planet statistics, with a focus on the inner ≲1-AU region of the planetary system that has been fairly thoroughly surveyed by the Kepler mission. We also discuss the theoretical implications of these statistical results for planet formation and dynamical evolution. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Raffaella Margutti ◽  
Ryan Chornock

We describe the first observations of the same celestial object with gravitational waves and light. ▪ GW170817 was the first detection of a neutron star merger with gravitational waves. ▪ The detection of a spatially coincident weak burst of gamma-rays (GRB 170817A) 1.7 s after the merger constituted the first electromagnetic detection of a gravitational wave source and established a connection between at least some cosmic short gamma-ray bursts (SGRBs) and binary neutron star mergers. ▪ A fast-evolving optical and near-infrared transient (AT 2017gfo) associated with the event can be interpreted as resulting from the ejection of ∼0.05 M⊙ of material enriched in r-process elements, finally establishing binary neutron star mergers as at least one source of r-process nucleosynthesis. ▪ Radio and X-ray observations revealed a long-rising source that peaked ∼[Formula: see text] after the merger. Combined with the apparent superluminal motion of the associated very long baseline interferometry source, these observations show that the merger produced a relativistic structured jet whose core was oriented ≈20 deg from the line of sight and with properties similar to SGRBs. The jet structure likely results from interaction between the jet and the merger ejecta. ▪ The electromagnetic and gravitational wave information can be combined to produce constraints on the expansion rate of the Universe and the equation of state of dense nuclear matter. These multimessenger endeavors will be a major emphasis for future work. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Suvi Gezari

The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probing otherwise dormant MBHs first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s, but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: ▪ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. ▪ The UV-optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range and is highly variable, providing important clues as to what is powering the two components. ▪ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, whereas those with only Heii emission lines are the rarest class. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document