scholarly journals GAMA/XXL: X-ray point sources in low-luminosity galaxies in the GAMA G02/XXL-N field

2021 ◽  
Vol 502 (2) ◽  
pp. 3101-3112
Author(s):  
E Nwaokoro ◽  
S Phillipps ◽  
A J Young ◽  
I Baldry ◽  
A Bongiorno ◽  
...  

ABSTRACT Relatively few X-ray sources are known that have low-mass galaxies as hosts. This is an important restriction on studies of active galactic nuclei (AGNs), hence black holes, and of X-ray binaries (XRBs) in low-mass galaxies; addressing it requires very large samples of both galaxies and X-ray sources. Here, we have matched the X-ray point sources found in the XXL-N field of the XXL survey (with an X-ray flux limit of ∼6 × 10−15 erg s−1 cm−2 in the [0.5–2] keV band) to galaxies with redshifts from the Galaxy And Mass Assembly (GAMA) G02 survey field (down to a magnitude limit r = 19.8) in order to search for AGNs and XRBs in GAMA galaxies, particularly those of low optical luminosity or stellar mass (fainter than Mr = −19 or $M_* \lesssim 10^{9.5}\, \mathrm{M}_{\odot }$). Out of a total of 1200 low-mass galaxies in the overlap region, we find a total of 28 potential X-ray source hosts, though this includes possible background contaminants. From a combination of photometry (optical and infrared colours), positional information, and optical spectra, we deduce that most of the ≃20 X-ray sources genuinely in low-mass galaxies are high-mass X-ray binaries in star-forming galaxies. None of the matched sources in a low-mass galaxy has a BPT classification as an AGN, and even ignoring this requirement, none passes both criteria of close match between the X-ray source position and optical galaxy centre (separation ≤3 arcsec) and high [O iii] line luminosity (above 1040.3 erg s−1).

1999 ◽  
Vol 192 ◽  
pp. 100-103
Author(s):  
A. P. Cowley ◽  
P. C. Schmidtke ◽  
V. A. Taylor ◽  
T.K. McGrath ◽  
J. B. Hutchings ◽  
...  

In this study we compare the global populations of stellar X-ray sources in the LMC, SMC, and the Galaxy. After removing foreground stars and background AGN from the samples, the relative numbers of the various types of X-ray point sources within the LMC and SMC are similar, but differ markedly from those in the Galaxy. The Magellanic Clouds are rich in high-mass X-ray binaries (HMXB), especially those containing rapidly rotating Be stars. However, the LMC and SMC both lack the large number of low-mass X-ray binaries (LMXB) found in the Milky Way, which are known to represent a very old stellar population based on their kinematics, chemical composition, and spatial distribution.


2004 ◽  
Vol 194 ◽  
pp. 3-6
Author(s):  
Andrea H. Prestwich

AbstractChandra and XMM-Newton are revolutionizing our understanding of compact binaries in external galaxies, allowing us to study sources in detail in Local Group Galaxies and study populations in more distant systems. In M31 the X-ray luminosity function depends on the local stellar population in the sense that areas with active star formation have more high luminosity sources, and a higher overall source density (Kong. Di Stefano. Garcia, & Greiner 2003). This result is also true in galaxies outside the Local Group; starburst galaxies have flatter X-ray luminosity functions than do spiral galaxies which are in turn flatter than elliptical galaxies. These observational results suggest that the high end of the luminosity function in star forming regions is dominated by short-lived high mass X-ray binaries.In Chandra Cycle 2 we started a Large Project to survey a sample of 11 nearby (< 10Mpc) face-on spiral galaxies. We find that sources can be approximately classified on the basis of their X-ray color into low mass X-ray binaries, high mass X-ray binaries and supersoft sources. There is an especially interesting class of source that has X-ray colors softer (“redder”) than a typical low mass X-ray binary source, but not so extreme as supersoft sources. Most of these are probably X-ray bright supernova remnants, but some may be a new type of black hole accretor. Finally, when we construct a luminosity function of sources selecting only sources with low mass X-ray binary colors (removing soft sources) we find that there is a dip or break probably associated with the Eddington luminosity for a neutron star.


New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2019 ◽  
Vol 492 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Xinwu Cao ◽  
Andrzej A Zdziarski

ABSTRACT The high-mass accreting binary Cyg X-3 is distinctly different from low-mass X-ray binaries (LMXBs) in having powerful radio and γ-ray emitting jets in its soft spectral state. However, the transition from the hard state to the soft one is first associated with quenching of the hard-state radio emission, as in LMXBs. The powerful soft-state jets in Cyg X-3 form, on average, ∼50 d later. We interpret the initial jet quenching as due to the hard-state vertical magnetic field quickly diffusing away in the thin disc extending to the innermost stable circular orbit in the soft state, or, if that field is produced in situ, also cessation of its generation. The subsequent formation of the powerful jets occurs due to advection of the magnetic field from the donor. We find this happens only above certain threshold accretion rate associated with appearance of magnetically driven outflows. The ∼50 d lag is of the order of the viscous time-scale in the outer disc, while the field advection is much faster. This process does not happen in LMXBs due to the magnetic fluxes available from their donors being lower than that for the wind accretion from the Wolf–Rayet donor of Cyg X-3. In our model, the vertical magnetic field in the hard state, required to form the jets both in Cyg X-3 and LMXBs, is formed in situ rather than advected from the donor. Our results provide a unified scenario of the soft and hard states in both Cyg X-3 and LMXBs.


2020 ◽  
Vol 494 (1) ◽  
pp. 941-957 ◽  
Author(s):  
Peter Senchyna ◽  
Daniel P Stark ◽  
Jordan Mirocha ◽  
Amy E Reines ◽  
Stéphane Charlot ◽  
...  

ABSTRACT Despite significant progress both observationally and theoretically, the origin of high-ionization nebular He ii emission in galaxies dominated by stellar photoionization remains unclear. Accretion-powered radiation from high-mass X-ray binaries (HMXBs) is still one of the leading proposed explanations for the missing He+-ionizing photons, but this scenario has yet to be conclusively tested. In this paper, we present nebular line predictions from a grid of photoionization models with input spectral energy distributions containing the joint contribution of both stellar atmospheres and a multicolour disc model for HMXBs. This grid demonstrates that HMXBs are inefficient producers of the photons necessary to power He ii, and can only boost this line substantially in galaxies with HMXB populations large enough to power X-ray luminosities of 1042 erg s−1 per unit star formation rate (SFR). To test this, we assemble a sample of 11 low-redshift star-forming galaxies with high-quality constraints on both X-ray emission from Chandra and He ii emission from deep optical spectra, including new observations with the MMT. These data reveal that the HMXB populations of these nearby systems are insufficient to account for the observed He ii strengths, with typical X-ray luminosities or upper limits thereon of only 1040–1041 erg s−1 per SFR. This indicates that HMXBs are not the dominant source of He+ ionization in these metal-poor star-forming galaxies. We suggest that the solution may instead reside in revisions to stellar wind predictions, softer X-ray sources, or very hot products of binary evolution at low metallicity.


2018 ◽  
Vol 14 (S346) ◽  
pp. 332-336
Author(s):  
M. Celeste Artale ◽  
Nicola Giacobbo ◽  
Michela Mapelli ◽  
Paolo Esposito

AbstractThe high mass X-ray binaries (HMXBs) provide an exciting framework to investigate the evolution of massive stars and the processes behind binary evolution. HMXBs have shown to be good tracers of recent star formation in galaxies and might be important feedback sources at early stages of the Universe. Furthermore, HMXBs are likely the progenitors of gravitational wave sources (BH–BH or BH–NS binaries that may merge producing gravitational waves). In this work, we investigate the nature and properties of HMXB population in star-forming galaxies. We combine the results from the population synthesis model MOBSE (Giacobbo & Mapelli 2018a) together with galaxy catalogs from EAGLE simulation (Schaye et al. 2015). Therefore, this method describes the HMXBs within their host galaxies in a self-consistent way. We compute the X-ray luminosity function (XLF) of HMXBs in star-forming galaxies, showing that this methodology matches the main features of the observed XLF.


2007 ◽  
Vol 469 (2) ◽  
pp. 807-810 ◽  
Author(s):  
Q. Z. Liu ◽  
J. van Paradijs ◽  
E. P. J. van den Heuvel

2005 ◽  
Vol 1 (S230) ◽  
pp. 340-344
Author(s):  
A. A. Lutovinov ◽  
M. G. Revnivtsev ◽  
M. R. Gilfanov ◽  
R. A. Sunyaev
Keyword(s):  
X Ray ◽  

1996 ◽  
Vol 165 ◽  
pp. 289-300
Author(s):  
F. Nagase

There are about a dozen extensively investigated high-mass X-ray binaries (HMXBs), including LMC X-4, Cen X-3, 4U 1700-37, SMC X-1, Cyg X-1, and Vela X-1. Bhattacharya & Van den Heuvel (1991) compiled a list of “standard” HMXBs (see table 8 of their review article) and most of them, except for Cyg X-1 and 4U 1700-37, are accreting X-ray pulsars with an early-type or a Be star companion. Cyg X-3 was long considered to be a low-mass X-ray binary (LMXB). It was, however, recently revealed from infrared observations that the companion star has characteristics of a Wolf-Rayet star and it may be a fairly massive helium star (Van Kerkwijk et al. 1992; Van Kerkwijk 1993). I shall review here some recent progress in observational studies of the “standard” HMXBs and Cyg X-3.


1987 ◽  
Vol 125 ◽  
pp. 135-148
Author(s):  
N.E. White

This paper reviews accreting neutron stars in X-ray binaries, with particular emphasis on how variations in magnetic field strength may be responsible for explaining the spectral and temporal properties observed from the various systems. This includes a review of X-ray pulsars in both low and high mass systems, and a discussion of the spectral properties of the low mass X-ray binaries.


Sign in / Sign up

Export Citation Format

Share Document