star formation in galaxies
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 21)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
M. F. Rashman ◽  
I. A. Steele ◽  
S. D. Bates ◽  
J. H. Knapen

AbstractMid-Infrared imaging is vital for the study of a wide variety of astronomical phenomena, including evolved stars, exoplanets, and dust enshrouded processes such as star formation in galaxies. However, infrared detectors have traditionally been expensive and it is difficult to achieve the sensitivity needed to see beyond the overwhelming mid-infrared background. Here we describe the upgrade and commissioning of a simple prototype, low-cost 10 μ m imaging instrument. The system was built using commercially available components including an uncooled microbolometer focal plane array and chopping system. The system was deployed for a week on the 1.52 m Carlos Sanchez Telescope and used to observe several very bright mid-infrared sources with catalogue fluxes down to $\sim 600$ ∼ 600 Jy. We report a sensitivity improvement of $\sim 4$ ∼ 4 mag over our previous unchopped observations, in line with our earlier predictions.


2021 ◽  
Vol 502 (3) ◽  
pp. 4457-4478
Author(s):  
Anna R Gallazzi ◽  
A Pasquali ◽  
S Zibetti ◽  
F La Barbera

ABSTRACT We explore how the star formation and metal enrichment histories of present-day galaxies have been affected by environment combining stellar population parameter estimates and group environment characterization for SDSS DR7. We compare stellar ages, stellar metallicities, and crucially, element abundance ratios $\rm [\alpha /Fe]$ of satellite and central galaxies, as a function of their stellar and host group halo mass, controlling for the current star formation rate and for the infall epoch. We confirm that below M* ∼ 1010.5 M⊙ satellites are older and slightly metal richer than equally massive central galaxies. In contrast, we do not detect any difference in their $\rm [\alpha /Fe]$: $\rm [\alpha /Fe]$ depends primarily on stellar mass and not on group hierarchy nor host halo mass. We also find that the differences in the median age and metallicity of satellites and centrals at stellar mass below $\rm 10^{10.5}\,M_\odot$ are largely due to the higher fraction of passive galaxies among satellites and as a function of halo mass. We argue that the observed trends at low masses reveal the action of satellite-specific environmental effects in a ‘delayed-then-rapid’ fashion. When accounting for the varying quiescent fraction, small residual excess in age, metallicity and $\rm [\alpha /Fe]$ emerge for satellites dominated by old stellar populations and residing in haloes more massive than 1014 M⊙, compared to equally massive central galaxies. This excess in age, metallicity, and $\rm [\alpha /Fe]$ pertain to ancient infallers, i.e. satellites that have accreted on to the current halo more than 5 Gyr ago. This result points to the action of environment in the early phases of star formation in galaxies located close to cosmic density peaks.


2021 ◽  
Vol 502 (1) ◽  
pp. L95-L98
Author(s):  
Michael J Greener ◽  
Michael Merrifield ◽  
Alfonso Aragón-Salamanca ◽  
Thomas Peterken ◽  
Brett Andrews ◽  
...  

ABSTRACT The levels of heavy elements in stars are the product of enhancement by previous stellar generations, and the distribution of this metallicity among the population contains clues to the process by which a galaxy formed. Most famously, the ‘G-dwarf problem’ highlighted the small number of low-metallicity G-dwarf stars in the Milky Way, which is inconsistent with the simplest picture of a galaxy formed from a ‘closed box’ of gas. It can be resolved by treating the Galaxy as an open system that accretes gas throughout its life. This observation has classically only been made in the Milky Way, but the availability of high-quality spectral data from SDSS-IV MaNGA and the development of new analysis techniques mean that we can now make equivalent measurements for a large sample of spiral galaxies. Our analysis shows that high-mass spirals generically show a similar deficit of low-metallicity stars, implying that the Milky Way’s history of gas accretion is common. By contrast, low-mass spirals show little sign of a G-dwarf problem, presenting the metallicity distribution that would be expected if such systems evolved as pretty much closed boxes. This distinction can be understood from the differing timescales for star formation in galaxies of differing masses.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Robert Feldmann

AbstractObservations of the interstellar medium are key to deciphering the physical processes regulating star formation in galaxies. However, observational uncertainties and detection limits can bias the interpretation unless carefully modeled. Here I re-analyze star formation rates and gas masses of a representative sample of nearby galaxies with the help of multi-dimensional Bayesian modeling. Typical star forming galaxies are found to lie in a ‘star forming plane’ largely independent of their stellar mass. Their star formation activity is tightly correlated with the molecular and total gas content, while variations of the molecular-gas-to-star conversion efficiency are shown to be significantly smaller than previously reported. These data-driven findings suggest that physical processes that modify the overall galactic gas content, such as gas accretion and outflows, regulate the star formation activity in typical nearby galaxies, while a change in efficiency triggered by, e.g., galaxy mergers or gas instabilities, may boost the activity of starbursts.


2020 ◽  
Vol 499 (1) ◽  
pp. 631-652
Author(s):  
J A Vázquez-Mata ◽  
J Loveday ◽  
S D Riggs ◽  
I K Baldry ◽  
L J M Davies ◽  
...  

ABSTRACT How do galaxy properties (such as stellar mass, luminosity, star formation rate, and morphology) and their evolution depend on the mass of their host dark matter halo? Using the Galaxy and Mass Assembly group catalogue, we address this question by exploring the dependence on host halo mass of the luminosity function (LF) and stellar mass function (SMF) for grouped galaxies subdivided by colour, morphology, and central/satellite. We find that spheroidal galaxies in particular dominate the bright and massive ends of the LF and SMF, respectively. More massive haloes host more massive and more luminous central galaxies. The satellites LF and SMF, respectively, show a systematic brightening of characteristic magnitude, and increase in characteristic mass, with increasing halo mass. In contrast to some previous results, the faint-end and low-mass slopes show little systematic dependence on halo mass. Semi-analytic models and simulations show similar or enhanced dependence of central mass and luminosity on halo mass. Faint and low-mass simulated satellite galaxies are remarkably independent of halo mass, but the most massive satellites are more common in more massive groups. In the first investigation of low-redshift LF and SMF evolution in group environments, we find that the red/blue ratio of galaxies in groups has increased since redshift z ≈ 0.3 relative to the field population. This observation strongly suggests that quenching of star formation in galaxies as they are accreted into galaxy groups is a significant and ongoing process.


2020 ◽  
Vol 497 (4) ◽  
pp. 4346-4356 ◽  
Author(s):  
Michael Kretschmer ◽  
Oscar Agertz ◽  
Romain Teyssier

ABSTRACT Galactic outflows driven by stellar feedback are crucial for explaining the inefficiency of star formation in galaxies. Although strong feedback can promote the formation of galactic discs by limiting star formation at early times and removing low angular momentum (AM) gas, it is not understood how the same feedback can result in diverse objects such as elliptical galaxies or razor thin spiral galaxies. We investigate this problem using cosmological zoom-in simulations of two galaxies forming within 1012 M⊙ haloes with almost identical mass accretion histories and halo spin parameters. However, the two resulting galaxies end up with very different bulge-to-disc ratios at z = 0. At z > 1.5, the two galaxies feature a surface density of star formation ΣSFR ≃ 10 M⊙ yr−1 kpc−2, leading to strong outflows. After the last starburst episode, both galaxies feature a dramatic gaseous disc growth from 1 to 5 kpc during 1 Gyr, a decisive event we dub ‘the Grand Twirl’. After this event, the evolutionary tracks diverge strongly, with one galaxy ending up as a bulge-dominated galaxy, whereas the other ends up as a disc-dominated galaxy. The origins of this dichotomy are the AM of the accreted gas, and whether it adds constructively to the initial disc angular momentum. The build-up of this extended disc leads to a rapid lowering of ΣSFR by over two orders of magnitude with ΣSFR ≲ 0.1 M⊙ yr−1 kpc−2, in remarkable agreement with what is derived from Milky Way stellar populations. As a consequence, supernovae explosions are spread out and cannot launch galactic outflows anymore, allowing for the persistence of a thin, gently star-forming, extended disc.


2020 ◽  
Vol 497 (4) ◽  
pp. 4614-4625
Author(s):  
Antonio Hernán-Caballero ◽  
Henrik W W Spoon ◽  
Almudena Alonso-Herrero ◽  
Evanthia Hatziminaoglou ◽  
Georgios E Magdis ◽  
...  

ABSTRACT We present a method for recovering the intrinsic (extinction-corrected) luminosity of the 11.2 μm PAH band in galaxy spectra. Using 105 high S/N Spitzer/IRS spectra of star-forming galaxies, we show that the equivalent width ratio of the 12.7 and 11.2 μm PAH bands is independent on the optical depth (τ), with small dispersion (∼5 per cent) indicative of a nearly constant intrinsic flux ratio Rint = (f12.7/f11.2)int = 0.377 ± 0.020. Conversely, the observed flux ratio, Robs = (f12.7/f11.2)obs, strongly correlates with the silicate strength (Ssil) confirming that differences in Robs reflect variation in τ. The relation between Robs and Ssil reproduces predictions for the Galactic Centre extinction law but disagrees with other laws. We calibrate the total extinction affecting the 11.2 μm PAH from Robs, which we apply to another sample of 215 galaxies with accurate measurements of the total infrared luminosity (LIR) to investigate the impact of extinction on L11.2/LIR. Correlation between L11.2/LIR and Robs independently on LIR suggests that increased extinction explains the well-known decrease in the average L11.2/LIR at high LIR. The extinction-corrected L11.2 is proportional to LIR in the range LIR = 109–1013 L⊙. These results consolidate L11.2 as a robust tracer of star formation in galaxies.


2020 ◽  
Vol 496 (1) ◽  
pp. L1-L5 ◽  
Author(s):  
C L Dobbs ◽  
K Y Liow ◽  
S Rieder

ABSTRACT Young massive clusters (YMCs) are the most intense regions of star formation in galaxies. Formulating a model for YMC formation while at the same time meeting the constraints from observations is, however, highly challenging. We show that forming YMCs requires clouds with densities ≳ 100 cm−3 to collide with high velocities (≳ 20 km s−1). We present the first simulations which, starting from moderate cloud densities of ∼100 cm−3, are able to convert a large amount of mass into stars over a time period of around 1 Myr, to produce dense massive clusters similar to those observed. Such conditions are commonplace in more extreme environments, where YMCs are common, but atypical for our Galaxy, where YMCs are rare.


Sign in / Sign up

Export Citation Format

Share Document