scholarly journals Eccentric debris disc morphologies I: exploring the origin of apocentre and pericentre glows in face-on debris discs

Author(s):  
Elliot M Lynch ◽  
Joshua B Lovell

Abstract The location of surface brightness maxima (e.g. apocentre and pericentre glow) in eccentric debris discs are often used to infer the underlying orbits of the dust and planetesimals that comprise the disc. However, there is a misconception that eccentric discs have higher surface densities at apocentre and thus necessarily exhibit apocentre glow at long wavelengths. This arises from the expectation that the slower velocities at apocentre lead to a “pile up” of dust, which fails to account for the greater area over which dust is spread at apocentre. Instead we show with theory and by modelling three different regimes that the morphology and surface brightness distributions of face-on debris discs are strongly dependent on their eccentricity profile (i.e. whether this is constant, rising or falling with distance). We demonstrate that at shorter wavelengths the classical pericentre glow effect remains true, whereas at longer wavelengths discs can either demonstrate apocentre glow or pericentre glow. We additionally show that at long wavelengths the same disc morphology can produce either apocentre glow or pericentre glow depending on the observational resolution. Finally, we show that the classical approach of interpreting eccentric debris discs using line densities is only valid under an extremely limited set of circumstances, which are unlikely to be met as debris disc observations become increasingly better resolved.

1967 ◽  
Vol 31 ◽  
pp. 171-172
Author(s):  
Th. Schmidt-Kaler

The integralNHof neutral-hydrogen density along the line of sight is determined from the Kootwijk and Sydney surveys. The run ofNHwith galactic longitude agrees well with that of thermal continuous radiation and that of the optical surface brightness of the Milky Way.


1999 ◽  
Vol 190 ◽  
pp. 561-562
Author(s):  
G. P. Di Benedetto

An accurate calibration of the surface brightness scaleSVas a function of the near-IR color (V–K) has been recently measured for non-variable Galactic dwarf and giant stars. It can be shown that this correlation can be applied to theSVscale of Galactic Cepheid variable stars, which are of major cosmological interest.


Nature ◽  
2002 ◽  
Author(s):  
Meera Louis
Keyword(s):  

2003 ◽  
Vol 779 ◽  
Author(s):  
David Christopher ◽  
Steven Kenny ◽  
Roger Smith ◽  
Asta Richter ◽  
Bodo Wolf ◽  
...  

AbstractThe pile up patterns arising in nanoindentation are shown to be indicative of the sample crystal symmetry. To explain and interpret these patterns, complementary molecular dynamics simulations and experiments have been performed to determine the atomistic mechanisms of the nanoindentation process in single crystal Fe{110}. The simulations show that dislocation loops start from the tip and end on the crystal surface propagating outwards along the four in-plane <111> directions. These loops carry material away from the indenter and form bumps on the surface along these directions separated from the piled-up material around the indenter hole. Atoms also move in the two out-of-plane <111> directions causing propagation of subsurface defects and pile-up around the hole. This finding is confirmed by scanning force microscopy mapping of the imprint, the piling-up pattern proving a suitable indicator of the surface crystallography. Experimental force-depth curves over the depth range of a few nanometers do not appear smooth and show distinct pop-ins. On the sub-nanometer scale these pop-ins are also visible in the simulation curves and occur as a result of the initiation of the dislocation loops from the tip.


1999 ◽  
Vol 118 (3) ◽  
pp. 1220-1229 ◽  
Author(s):  
Taft E. Armandroff ◽  
George H. Jacoby ◽  
James E. Davies

1999 ◽  
Vol 118 (2) ◽  
pp. 765-776 ◽  
Author(s):  
T. E. Pickering ◽  
J. H. van Gorkom ◽  
C. D. Impey ◽  
A. C. Quillen

2000 ◽  
Vol 119 (4) ◽  
pp. 1691-1694 ◽  
Author(s):  
Takashi Murayama ◽  
Shingo Nishiura ◽  
Tohru Nagao ◽  
Yasunori Sato ◽  
Yoshiaki Taniguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document