scholarly journals Erratum: Background for gravitational wave signal at LISA from refractive index of solar wind plasma

2021 ◽  
Vol 510 (2) ◽  
pp. 1994-1995
Author(s):  
Adam Smetana
2002 ◽  
Vol 199 ◽  
pp. 426-429 ◽  
Author(s):  
P.K. Manoharan ◽  
M. Pick ◽  
Lasco Consortium

When radio waves propagate through a irregular medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena, which include intensity scintillation. The observed scattering can be interpreted to gain information about the random medium and such inversion studies are valuable when the accessibility of the medium becomes difficult. This paper briefly describes the intensity scintillation of celestial radio sources caused by the turbulence in the solar wind and summarizes the salient features of the method employed in mapping the structure of disturbances leaving the Sun out to ∼1 AU.


2020 ◽  
Vol 499 (1) ◽  
pp. L77-L81
Author(s):  
Adam Smetana

ABSTRACT A strong indication is presented that the space-based gravitational antennas, in particular the Laser Interferometer Space Antenna (LISA) concept introduced in 2017 in response to the ESA call for L3 mission concepts, are going to be sensitive to a strong background signal interfering with the prospected signal of gravitational waves. The false signal is due to variations in the electron number density of the solar wind, causing variations in the refractive index of plasma flowing through interplanetary space. As countermeasures, two solutions are proposed. The first solution is to deploy enough solar wind detectors to the LISA mission to allow for reliable knowledge of the solar wind background. The second solution is to equip the LISA interferometer with a second laser beam with a distinct wavelength to allow cancelling of the background solar wind signal from the interferometric data.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


1997 ◽  
Vol 20 (1) ◽  
pp. 15-22 ◽  
Author(s):  
P Riley ◽  
S.J Bame ◽  
B.L Barraclough ◽  
W.C Feldman ◽  
J.T Gosling ◽  
...  

Solar Physics ◽  
1971 ◽  
Vol 18 (1) ◽  
pp. 150-164 ◽  
Author(s):  
Tsutomu Toichi

2010 ◽  
Vol 28 (1) ◽  
pp. 015010 ◽  
Author(s):  
Christian Röver ◽  
Renate Meyer ◽  
Nelson Christensen

1995 ◽  
Vol 16 (9) ◽  
pp. 85-94 ◽  
Author(s):  
J.L. Phillips ◽  
S.J. Bame ◽  
W.C. Feldman ◽  
J.T. Gosling ◽  
C.M. Hammond ◽  
...  

Author(s):  
Timur Sh. KOMBAEV ◽  
Mikhail K. ARTEMOV ◽  
Valentin K. SYSOEV ◽  
Dmitry S. DEZHIN

It is proposed to develop a small spacecraft for an experiment using high-temperature superconductors (HTS) and shape memory materials. The purpose of the experiment is to test a technological capability of creating a strong magnetic field on the small spacecraft using HTS and shape memory materials for deployed large-area structures, and study the magnetic field interaction with the solar wind plasma and the resulting force impact on the small spacecraft. This article is of a polemical character and makes it possible to take a fresh look at the applicability of new technologies in space-system engineering. Key words: high-temperature superconductors, shape memory materials, solar wind, spacecraft.


Sign in / Sign up

Export Citation Format

Share Document