grand minimum
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroko Miyahara ◽  
Fuyuki Tokanai ◽  
Toru Moriya ◽  
Mirei Takeyama ◽  
Hirohisa Sakurai ◽  
...  

AbstractThe Sun exhibits centennial-scale activity variations and sometimes encounters grand solar minimum when solar activity becomes extremely weak and sunspots disappear for several decades. Such an extreme weakening of solar activity could cause severe climate, causing massive reductions in crop yields in some regions. During the past decade, the Sun’s activity has tended to decline, raising concerns that the Sun might be heading for the next grand minimum. However, we still have an underdeveloped understanding of solar dynamo mechanisms and hence precise prediction of near-future solar activity is not attained. Here we show that the 11-year solar cycles were significantly lengthened before the onset of the Maunder Minimum (1645–1715 CE) based on unprecedentedly high-precision data of carbon-14 content in tree rings. It implies that flow speed in the convection zone is an essential parameter to determine long-term solar activity variations. We find that a 16 year-long cycle had occurred three solar cycles before the onset of prolonged sunspot disappearance, suggesting a longer-than-expected preparatory period for the grand minimum. As the Sun has shown a tendency of cycle lengthening since Solar Cycle 23 (1996–2008 CE), the behavior of Solar Cycle 25 can be critically important to the later solar activity.


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1749-1754 ◽  
Author(s):  
Toru Moriya ◽  
Hiroko Miyahara ◽  
Motonari Ohyama ◽  
Masataka Hakozaki ◽  
Mirei Takeyama ◽  
...  

ABSTRACTProxy-based observations of solar activity in the past have revealed long-term variations, such as the Gleissberg cycle (~88 yr), de Vries cycle (~200 yr), and the Hallstatt cycle (~2000 yr). Such long-term variations of solar activity sometimes cause the disappearance of sunspots for several decades. Currently, solar activity is becoming weaker, and there is a possibility that another long-term sunspot minimum could occur. However, the detailed mechanism of the weakening in solar activity is unknown, and the prediction of solar activity is ambiguous. In this study, we investigate the transitions of solar cycle length before the onset of the Spoerer Minimum, the longest grand minimum in the past 2000 yr. We measured the 14C content in an asunaro tree (Thujopsis dolabrata) excavated at Shimokita Peninsula from 1368–1420 CE using the compact AMS system at Yamagata University. It is found that the solar cycle lengthened to be 14–16 yr from 2 cycles before the onset of the Spoerer Minimum.


2015 ◽  
Vol 581 ◽  
pp. A95 ◽  
Author(s):  
Ilya G. Usoskin ◽  
Rainer Arlt ◽  
Eleanna Asvestari ◽  
Ed Hawkins ◽  
Maarit Käpylä ◽  
...  

2014 ◽  
Vol 119 (5) ◽  
pp. 3281-3285 ◽  
Author(s):  
N. V. Zolotova ◽  
D. I. Ponyavin
Keyword(s):  

2011 ◽  
Vol 7 (S286) ◽  
pp. 367-371 ◽  
Author(s):  
Bidya Binay Karak ◽  
Arnab Rai Choudhuri

AbstractWe explore the importance of meridional circulation variations in modelling the irregularities of the solar cycle by using the flux transport dynamo model. We show that a fluctuating meridional circulation can reproduce some features of the solar cycle like the Waldmeier effect and the grand minimum. However, we get all these results only if the value of the turbulent diffusivity in the convection zone is reasonably high.


Sign in / Sign up

Export Citation Format

Share Document