scholarly journals Short-duration high-amplitude flares detected on the M dwarf star KIC 5474065

2013 ◽  
Vol 434 (3) ◽  
pp. 2451-2457 ◽  
Author(s):  
Gavin Ramsay ◽  
J. Gerry Doyle ◽  
Pasi Hakala ◽  
David Garcia-Alvarez ◽  
Adam Brooks ◽  
...  
2000 ◽  
Vol 83 (5) ◽  
pp. 2854-2868 ◽  
Author(s):  
Irene C. Solomon ◽  
Norman H. Edelman ◽  
Judith A. Neubauer

Recently, we identified a region located in the pre-Bötzinger complex (pre-BötC; the proposed locus of respiratory rhythm generation) in which activation of ionotropic excitatory amino acid receptors usingdl-homocysteic acid (DLH) elicits a variety of excitatory responses in the phrenic neurogram, ranging from tonic firing to a rapid series of high-amplitude, rapid rate of rise, short-duration inspiratory bursts that are indistinguishable from gasps produced by severe systemic hypoxia. Therefore we hypothesized that this unique region is chemosensitive to hypoxia. To test this hypothesis, we examined the response to unilateral microinjection of sodium cyanide (NaCN) into the pre-BötC in chloralose- or chloralose/urethan-anesthetized vagotomized, paralyzed, mechanically ventilated cats. In all experiments, sites in the pre-BötC were functionally identified using DLH (10 mM, 21 nl) as we have previously described. All sites were histologically confirmed to be in the pre-BötC after completion of the experiment. Unilateral microinjection of NaCN (1 mM, 21 nl) into the pre-BötC produced excitation of phrenic nerve discharge in 49 of the 81 sites examined. This augmentation of inspiratory output exhibited one of the following changes in cycle timing and/or pattern: 1) a series of high-amplitude, short-duration bursts in the phrenic neurogram (a discharge similar to a gasp), 2) a tonic excitation of phrenic neurogram output, 3) augmented bursts in the phrenic neurogram (i.e., eupneic breath ending with a gasplike burst), or 4) an increase in frequency of phrenic bursts accompanied by small increases or decreases in the amplitude of integrated phrenic nerve discharge. Our findings identify a locus in the brain stem in which focal hypoxia augments respiratory output. We propose that the respiratory rhythm generator in the pre-BötC has intrinsic hypoxic chemosensitivity that may play a role in hypoxia-induced gasping.


2019 ◽  
Vol 871 (2) ◽  
pp. L26 ◽  
Author(s):  
Cynthia S. Froning ◽  
Adam Kowalski ◽  
Kevin France ◽  
R. O. Parke Loyd ◽  
P. Christian Schneider ◽  
...  
Keyword(s):  

1992 ◽  
Vol 263 (4) ◽  
pp. G551-G557 ◽  
Author(s):  
C. J. Martin ◽  
W. J. Dodds ◽  
H. H. Liem ◽  
R. O. Dantas ◽  
R. D. layman ◽  
...  

Events associated with gastroesophageal reflux have been determined by concurrent diaphragmatic and esophageal body electromyography, video radiography, and manometry in four conscious dogs. Three characteristic phenomena occurred in parallel immediately before and during gastroesophageal reflux: 1) transient lower esophageal sphincter relaxation, 2) profound (99.5%) and selective inhibition of crural diaphragmatic activity, and 3) a previously unrecognized dorsal movement of the gastroesophageal junction (mean 1.3 cm) demonstrated by implanted radiological markers. The patterns associated with spontaneous acid and gas reflux were indistinguishable from those induced by gastric distension. Costolumbar diaphragmatic activity was stable up until the instant of sphincter opening, when there was a single costolumbar contraction of short duration and high amplitude. Esophageal shortening did not occur before reflux. Reflux that occurred after atropine-induced inhibition of lower esophageal sphincter tone to < 2 mmHg was intermittent and coincided with selective crural inhibition. These studies demonstrated that selective crural inhibition is a prerequisite for gastroesophageal reflux and suggest that the crural diaphragm is an important factor for the maintenance of gastroesophageal competence.


1999 ◽  
Vol 81 (3) ◽  
pp. 1150-1161 ◽  
Author(s):  
Irene C. Solomon ◽  
Norman H. Edelman ◽  
Judith A. Neubauer

Patterns of phrenic motor output evoked by chemical stimulation of neurons located in the pre-Bötzinger complex in vivo. The pre-Bötzinger complex (pre-BötC) has been proposed to be essential for respiratory rhythm generation from work in vitro. Much less, however, is known about its role in the generation and modulation of respiratory rhythm in vivo. Therefore we examined whether chemical stimulation of the in vivo pre-BötC manifests respiratory modulation consistent with a respiratory rhythm generator. In chloralose- or chloralose/urethan-anesthetized, vagotomized cats, we recorded phrenic nerve discharge and arterial blood pressure in response to chemical stimulation of neurons located in the pre-BötC with dl-homocysteic acid (DLH; 10 mM; 21 nl). In 115 of the 122 sites examined in the pre-BötC, unilateral microinjection of DLH produced an increase in phrenic nerve discharge that was characterized by one of the following changes in cycle timing and pattern: 1) a rapid series of high-amplitude, rapid rate of rise, short-duration bursts, 2) tonic excitation (with or without respiratory oscillations), 3) an integration of the first two types of responses (i.e., tonic excitation with high-amplitude, short-duration bursts superimposed), or 4) augmented bursts in the phrenic neurogram (i.e., eupneic breath ending with a high-amplitude, short-duration burst). In 107 of these sites, the phrenic neurogram response was accompanied by an increase or decrease (≥10 mmHg) in arterial blood pressure. Thus increases in respiratory burst frequency and production of tonic discharge of inspiratory output, both of which have been seen in vitro, as well as modulation of burst pattern can be produced by local perturbations of excitatory amino acid neurotransmission in the pre-BötC in vivo. These findings are consistent with the proposed role of this region as the locus for respiratory rhythm generation.


2013 ◽  
Vol 8 (S299) ◽  
pp. 376-377 ◽  
Author(s):  
Ludmila Carone ◽  
Rony Keppens ◽  
Leen Decin

AbstractWe investigated the large scale atmospheric circulation of Gl581g, a potentially habitable planet around an M dwarf star, using an idealized dry global circulation model (GCM) with simplified thermal forcing as a first step towards a systematic extended parameter study. The results are compared with the work of Joshi et al. (1997) who investigated a tidally-locked habitable Earth analogue with less than half the rotation period of Gl581g. The extent, form and strength of the atmospheric circulation in each model generally agree with each other, even though the models differ in key parameters such as planetary radius, surface gravity, forcing scheme and rotation period. The substellar point is associated with an uprising direct circulation-branch of a Hadley-like cell with return flow over the poles. It is compelling to assume that the substellar point of a tidally locked terrestrial exoplanet behaves dynamically like the Earth's tropic associated with clouds and precipitation, making it an ideal target for habitability.


1990 ◽  
Vol 349 ◽  
pp. 608 ◽  
Author(s):  
Arthur Young ◽  
Andrew Skumanich ◽  
Keith B. MacGregor ◽  
Scott Temple
Keyword(s):  

Astrobiology ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 208-221 ◽  
Author(s):  
John Lee Grenfell ◽  
Jean-Mathias Grießmeier ◽  
Beate Patzer ◽  
Heike Rauer ◽  
Antigona Segura ◽  
...  

2016 ◽  
Vol 590 ◽  
pp. A90 ◽  
Author(s):  
S. Lacour ◽  
B. Biller ◽  
A. Cheetham ◽  
A. Greenbaum ◽  
T. Pearce ◽  
...  
Keyword(s):  

2015 ◽  
Vol 104 ◽  
pp. 116-125 ◽  
Author(s):  
Eric Musselman ◽  
Matthew Fournier ◽  
Patrick McAlpine ◽  
Sri Sritharan

Sign in / Sign up

Export Citation Format

Share Document