scholarly journals The supergiant shell with triggered star formation in the dwarf irregular galaxy IC 2574: neutral and ionized gas kinematics

2014 ◽  
Vol 444 (1) ◽  
pp. 376-391 ◽  
Author(s):  
O. V. Egorov ◽  
T. A. Lozinskaya ◽  
A. V. Moiseev ◽  
G. V. Smirnov-Pinchukov
2019 ◽  
Vol 14 (S353) ◽  
pp. 264-265
Author(s):  
Isaura Fuentes-Carrera ◽  
Nelli Cárdenas-Martínez ◽  
Martín Nava-Callejas ◽  
Margarita Rosado

AbstractWe present scanning Fabry-Perot observations of different types of star-forming galaxies from apparently isolated LIRGs to equal mass interacting galaxies. We analyze the ionized gas kinematics, its relation with the morphology of each system and the location of SF regions for different systems.


2016 ◽  
Vol 11 (S322) ◽  
pp. 133-136
Author(s):  
N. Butterfield ◽  
C.C. Lang ◽  
E. A. C. Mills ◽  
D. Ludovici ◽  
J. Ott ◽  
...  

AbstractWe present NH3 and H64α+H63α VLA observations of the Radio Arc region, including the M0.20 – 0.033 and G0.10 – 0.08 molecular clouds. These observations suggest the two velocity components of M0.20 – 0.033 are physically connected in the south. Additional ATCA observations suggest this connection is due to an expanding shell in the molecular gas, with the centroid located near the Quintuplet cluster. The G0.10 – 0.08 molecular cloud has little radio continuum, strong molecular emission, and abundant CH3OH masers, similar to a nearby molecular cloud with no star formation: M0.25+0.01. These features detected in G0.10 – 0.08 suggest dense molecular gas with no signs of current star formation.


2003 ◽  
Vol 413 (1) ◽  
pp. 73-89 ◽  
Author(s):  
A. Zurita ◽  
M. Relaño ◽  
J. E. Beckman ◽  
J. H. Knapen

2014 ◽  
Vol 787 (1) ◽  
pp. 85 ◽  
Author(s):  
Sara C. Beck ◽  
John Lacy ◽  
Jean Turner ◽  
Thomas Greathouse ◽  
Susan Neff

2020 ◽  
Vol 495 (2) ◽  
pp. 2265-2284 ◽  
Author(s):  
Mathew R Varidel ◽  
Scott M Croom ◽  
Geraint F Lewis ◽  
Deanne B Fisher ◽  
Karl Glazebrook ◽  
...  

ABSTRACT We infer the intrinsic ionized gas kinematics for 383 star-forming galaxies across a range of integrated star formation rates (SFR ∈ [10−3, 102] M⊙ yr−1) at z ≲ 0.1 using a consistent 3D forward-modelling technique. The total sample is a combination of galaxies from the Sydney-AAO Multiobject Integral field Spectrograph (SAMI) Galaxy survey and DYnamics of Newly Assembled Massive Objects survey. For typical low-z galaxies taken from the SAMI Galaxy Survey, we find the vertical velocity dispersion (σv,z) to be positively correlated with measures of SFR, stellar mass, H i gas mass, and rotational velocity. The greatest correlation is with SFR surface density (ΣSFR). Using the total sample, we find σv,z increases slowly as a function of integrated SFR in the range SFR ∈ [10−3, 1]  M⊙ yr−1 from 17 ± 3 to 24 ± 5 km s−1 followed by a steeper increase up to σv,z ∼80 km s−1 for SFR ≳ 1 M⊙ yr−1. This is consistent with recent theoretical models that suggest a σv,z floor driven by star formation feedback processes with an upturn in σv,z at higher SFR driven by gravitational transport of gas through the disc.


2020 ◽  
Vol 498 (3) ◽  
pp. 4562-4576 ◽  
Author(s):  
Christina M Manzano-King ◽  
Gabriela Canalizo

ABSTRACT We present spatially resolved kinematic measurements of stellar and ionized gas components of dwarf galaxies in the stellar mass range $10^{8.5}\!-\!10^{10} \, \mathrm{M}_{\odot }$, selected from Sloan Digital Sky Survey DR7 and DR8 and followed up with Keck/Low-Resolution Imaging Spectrometer spectroscopy. We study the potential effects of active galactic nuclei (AGNs) on Galaxy-wide gas kinematics by comparing rotation curves of 26 Galaxies containing AGNs, and 19 control Galaxies with no optical or infrared signs of AGNs. We find a strong association between AGN activity and disturbed gas kinematics in the host Galaxies. While star-forming Galaxies in this sample tend to have orderly gas discs that co-rotate with the stars, 73 per cent of the AGNs have disturbed gas. We find that 5 out of 45 Galaxies have gaseous components in counter-rotation with their stars, and all Galaxies exhibiting counter-rotation contain AGNs. Six out of seven isolated Galaxies with disturbed ionized gas host AGNs. At least three AGNs fall clearly below the stellar–halo mass relation, which could be interpreted as evidence for ongoing star formation suppression. Taken together, these results provide new evidence supporting the ability of AGN to influence gas kinematics and suppress star formation in dwarf galaxies. This further demonstrates the importance of including AGN as a feedback mechanism in galaxy formation models in the low-mass regime.


1997 ◽  
Vol 490 (1) ◽  
pp. 227-237 ◽  
Author(s):  
S. Arribas ◽  
E. Mediavilla ◽  
B. Garcia‐Lorenzo ◽  
C. del Burgo
Keyword(s):  

2020 ◽  
Vol 635 ◽  
pp. A41
Author(s):  
Jan Florian ◽  
Bodo Ziegler ◽  
Michaela Hirschmann ◽  
Polychronis Papaderos ◽  
Ena Choi ◽  
...  

Context. Powerful active galactic nuclei (AGN) are supposed to play a key regulatory role on the evolution of their host galaxies by shaping the thermodynamic properties of their gas component. However, little is known as to the nature and the visibility timescale of the kinematical imprints of AGN-driven feedback. Gaining theoretical and observational insights into this subject is indispensable for a thorough understanding of the AGN-galaxy coevolution and could yield empirical diagnostics for the identification of galaxies that have experienced a major AGN episode in the past. Aims. We present an investigation of kinematical imprints of AGN feedback on the warm ionized gas medium (WIM) of massive early-type galaxies (ETGs). To this end, we take a two-fold approach that involves a comparative analysis of Hα velocity fields in 123 local ETGs from the CALIFA (Calar Alto Legacy Integral Field Area Survey) integral field spectroscopy survey with 20 simulated galaxies from high-resolution hydrodynamic cosmological SPHgal simulations. The latter were resimulated for two modeling setups, one with and another without AGN feedback. Methods. In order to quantify the effects of AGN feedback on gas kinematics, we measured three parameters that probe deviations from simple regular rotation by using the kinemetry package. These indicators trace the possible presence of distinct kinematic components in Fourier space (k3, 5/k1), variations in the radial profile of the kinematic major axis (σPA), and offsets between the stellar and gas velocity fields (Δϕ). These quantities were monitored in the simulations from a redshift 3 to 0.2 to assess the connection between black hole accretion history, stellar mass growth, and the kinematical perturbation of the WIM. Results. Observed local massive galaxies show a broad range of irregularities, indicating disturbed warm gas motions, which is irrespective of being classified via diagnostic lines as AGN or not. Simulations of massive galaxies with AGN feedback generally exhibit higher irregularity parameters than without AGN feedback, which is more consistent with observations. Besides AGN feedback, other processes like major merger events or infalling gas clouds can lead to elevated irregularity parameters, but they are typically of shorter duration. More specifically, k3, 5/k1 is most sensitive to AGN feedback, whereas Δϕ is most strongly affected by gas infall. Conclusions. We conclude that even if the general disturbance of the WIM velocity is not a unique indicator for AGN feedback, irregularity parameters that are high enough to be consistent with observations can only be reproduced in simulations with AGN feedback. Specifically, an elevated value for the deviation from simple ordered motion is a strong sign for previous events of AGN activity and feedback.


Sign in / Sign up

Export Citation Format

Share Document