integral field spectrograph
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 64)

H-INDEX

22
(FIVE YEARS 7)

2021 ◽  
Vol 162 (6) ◽  
pp. 298
Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Phillip J. MacQueen ◽  
Andreas Kelz ◽  
Niv Drory ◽  
...  

Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2 of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 < z < 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving power R ≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.


2021 ◽  
Vol 923 (1) ◽  
pp. 59
Author(s):  
Andrey Vayner ◽  
Nadia Zakamska ◽  
Shelley A. Wright ◽  
Lee Armus ◽  
Norman Murray ◽  
...  

Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of six radio-loud quasar host galaxies at z = 1.4–2.3. We combine the kiloparsec-scale resolution ALMA observations with high spatial resolution adaptive optics integral field spectrograph data of the ionized gas. We detect molecular gas emission in five quasar host galaxies and resolve the molecular interstellar medium using the CO (3–2) or CO (4–3) rotational transitions. Clumpy molecular outflows are detected in four quasar host galaxies and a merger system 21 kpc away from one quasar. Between the ionized and cold molecular gas phases, the majority of the outflowing mass is in a molecular phase, while for three out of four detected multiphase gas outflows, the majority of the kinetic luminosity and momentum flux is in the ionized phase. Combining the energetics of the multiphase outflows, we find that their driving mechanism is consistent with energy-conserving shocks produced by the impact of the quasar jets with the gas in the galaxy. By assessing the molecular gas mass to the dynamics of the outflows, we estimate a molecular gas depletion timescale of a few megayears. The gas outflow rates exceed the star formation rates, suggesting that quasar feedback is a major mechanism of gas depletion at the present time. The coupling efficiency between the kinetic luminosity of the outflows and the bolometric luminosity of the quasar of 0.1%–1% is consistent with theoretical predictions. Studying multiphase gas outflows at high redshift is important for quantifying the impact of negative feedback in shaping the evolution of massive galaxies.


Author(s):  
Fabian Göttgens ◽  
Sebastian Kamann ◽  
Holger Baumgardt ◽  
Stefan Dreizler ◽  
Benjamin Giesers ◽  
...  

Abstract We use spectra observed with the integral-field spectrograph MUSE to reveal the central kinematics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Using observations obtained with the recently commissioned narrow-field mode of MUSE, we are able to analyse 932 stars in the central 7.5 arcsec by 7.5 arcsec of the cluster for which no useful spectra previously existed. Mean radial velocities of individual stars derived from the spectra are compared to predictions from axisymmetric Jeans models, resulting in radial profiles of the velocity dispersion, the rotation amplitude, and the mass-to-light ratio. The new data allow us to search for an intermediate-mass black hole (IMBH) in the centre of the cluster. Our Jeans model finds two similarly probable solutions around different dynamical cluster centres. The first solution has a centre close to the photometric estimates available in the literature and does not need an IMBH to fit the observed kinematics. The second solution contains a location of the cluster centre that is offset by about 2.4 arcsec from the first one and it needs an IMBH mass of $4600^{+1700}_{-1400}~\text{M}_\odot {}$. N-body models support the existence of an IMBH in this cluster with a mass of up to 6000 M⊙ in this cluster, although models without an IMBH provide a better fit to the observed surface brightness profile. They further indicate that the cluster has lost nearly all stellar-mass black holes. We further discuss the detection of two potential high-velocity stars with radial velocities of 80 to 90 km s−1 relative to the cluster mean.


Author(s):  
Sebastiaan Y. Haffert ◽  
Jared Males ◽  
Laird Close ◽  
Joseph Long ◽  
Lauren Schatz ◽  
...  

Author(s):  
Emily M. Witt ◽  
Brian T. Fleming ◽  
James C. Green ◽  
Kevin France ◽  
Jack Williams ◽  
...  

2021 ◽  
Author(s):  
Mathis Houllé ◽  
Arthur Vigan ◽  
Alexis Carlotti ◽  
Élodie Choquet ◽  
Faustine Cantalloube ◽  
...  

&lt;p&gt;Combining high-contrast imaging with medium-resolution spectroscopy has recently been shown to significantly boost the direct detection of exoplanets. In this optic, HARMONI, one of the first-light instruments to be mounted on ESO's ELT, will be equipped with a single-conjugated adaptive optics system to reach the diffraction limit of the ELT in H and K bands, a high-contrast module dedicated to exoplanet imaging, and a medium-resolution (up to R = 17 000) optical and near-infrared integral field spectrograph. When combined, these systems will provide unprecedented contrast limits at separations between 50 and 400 mas. We will present in this talk the results of extensive simulations of exoplanet observations with the HARMONI high-contrast module. We used an end-to-end model of the instrument to simulate observations based on realistic observing scenarios and conditions. We then analyzed these observations with the so-called &quot;molecule mapping&quot; technique, which has shown in recent studies its efficiency to disentangle planetary companions from their host star and boost their signal. Although HARMONI has not been fully designed for high-contrast imaging, we will show that it should greatly outperform the current dedicated instruments, such as SPHERE on the VLT. We detect planets above 5&amp;#963; in 2 hours at contrasts up to 16 mag and separations down to 75 mas in several spectral configurations of the instrument. Simulating planets from population synthesis models, we could image in this amount of time companions as close as 1 AU from a host star at 30 pc and as light as 2 M&lt;sub&gt;Jup&lt;/sub&gt;. We show that taking advantage of the combination of high-contrast imaging and medium-resolution spectroscopy through molecule mapping allows us to access much fainter planets (up to 2.5 mag) than the standard high-contrast imaging techniques. We also demonstrate that HARMONI should be available for near-critical exoplanet observations with this method during 60 to 70% of telescope time at the ELT.&lt;/p&gt;


Author(s):  
A. Zanella ◽  
C. Zanoni ◽  
F. Arrigoni-Battaia ◽  
A. Rubin ◽  
A. F. Pala ◽  
...  

AbstractWith this paper we participate to the call for ideas issued by the European Space Agency to define the Science Program and plan for space missions from 2035 to 2050. In particular we present five science cases where major advancements can be achieved thanks to space-based spectroscopic observations at ultraviolet (UV) wavelengths. We discuss the possibility to (1) unveil the large-scale structures and cosmic web in emission at redshift $\lesssim 1.7$ ≲ 1.7 ; (2) study the exchange of baryons between galaxies and their surroundings to understand the contribution of the circumgalactic gas to the evolution and angular-momentum build-up of galaxies; (3) constrain the efficiency of ram-pressure stripping in removing gas from galaxies and its role in quenching star formation; (4) characterize the progenitor population of core-collapse supernovae to reveal the explosion mechanisms of stars; (5) target accreting white dwarfs in globular clusters to determine their evolution and fate. These science themes can be addressed thanks to UV (wavelength range $\lambda \sim 90 - 350$ λ ∼ 90 − 350 nm) observations carried out with a panoramic integral field spectrograph (field of view $\sim \!1 \times 1$ ∼ 1 × 1 arcmin2), and medium spectral (R = 4000) and spatial ($\sim \!1^{\prime \prime } - 3^{\prime \prime }$ ∼ 1 ′ ′ − 3 ′ ′ ) resolution. Such a UV-optimized instrument will be unique in the coming years, when most of the new large facilities such as the Extremely Large Telescope and the James Webb Space Telescope are optimized for infrared wavelengths.


2021 ◽  
Vol 648 ◽  
pp. A34
Author(s):  
T. Preibisch ◽  
S. Flaischlen ◽  
C. Göppl ◽  
B. Ercolano ◽  
V. Roccatagliata

Context. The Carina Nebula harbors a large population of high-mass stars, including at least 75 O-type and Wolf-Rayet (WR) stars, but the current census is not complete since further high-mass stars may be hidden in or behind the dense dark clouds that pervade the association. Aims. With the aim of identifying optically obscured O- and early B-type stars in the Carina Nebula, we performed the first infrared spectroscopic study of stars in the optically obscured stellar cluster Tr 16-SE, located behind a dark dust lane south of η Car. Methods. We used the integral-field spectrograph KMOS at the ESO VLT to obtain H- and K-band spectra with a resolution of R ≈ 4000 (Δλ ≈ 5 Å) for 45 out of the 47 possible OB candidate stars in Tr 16-SE, and we derived spectral types for these stars. Results. We find 15 stars in Tr 16-SE with spectral types between O5 and B2 (i.e., high-mass stars with M ≥ 8 M⊙), only two of which were known before. An additional nine stars are classified as (Ae)Be stars (i.e., intermediate-mass pre-main-sequence stars), and most of the remaining targets show clear signatures of being late-type stars and are thus most likely foreground stars or background giants unrelated to the Carina Nebula. Our estimates of the stellar luminosities suggest that nine of the 15 O- and early B-type stars are members of Tr 16-SE, whereas the other six seem to be background objects. Conclusions. Our study increases the number of spectroscopically identified high-mass stars (M ≥ 8 M⊙) in Tr 16-SE from two to nine and shows that Tr 16-SE is one of the larger clusters in the Carina Nebula. Our identification of three new stars with spectral types between O5 and O7 and four new stars with spectral types O9 to B1 significantly increases the number of spectroscopically identified O-type stars in the Carina Nebula.


2020 ◽  
Vol 645 ◽  
pp. A12
Author(s):  
B. Balmaverde ◽  
A. Capetti ◽  
A. Marconi ◽  
G. Venturi ◽  
M. Chiaberge ◽  
...  

We present the final observations of a complete sample of 37 radio galaxies from the Third Cambridge Catalogue (3C) with redshift < 0.3 and declination < 20° obtained with the VLT/MUSE optical integral field spectrograph. These data were obtained as part of the MUse RAdio Loud Emission line Snapshot (MURALES) survey with the main goal of exploring the AGN feedback process in the most powerful radio sources. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to the unprecedented depth these observations reveal emission line regions (ELRs) extending several tens of kiloparsec in most objects. The gas velocity shows ordered rotation in 25 galaxies, but in several sources it is highly complex. We find that the 3C sources show a connection between radio morphology and emission line properties. In the ten FR I sources the line emission region is generally compact, only a few kpc in size; only in one case does it exceed the size of the host. Conversely, all but two of the FR II galaxies show large-scale structures of ionized gas. The median extent is 16 kpc with the maximum reaching a size of ∼80 kpc. There are no apparent differences in extent or strength between the ELR properties of the FR II sources of high and low gas excitation. We confirm that the previous optical identification of 3C 258 is incorrect: this radio source is likely associated with a quasi-stellar object at z ∼ 1.54.


Sign in / Sign up

Export Citation Format

Share Document