scholarly journals Three-dimensional extinction mapping using Gaussian random fields

2014 ◽  
Vol 445 (1) ◽  
pp. 256-269 ◽  
Author(s):  
S. E. Sale ◽  
J. Magorrian
Author(s):  
Zoya O. Vyzhva

The estimator of the mean-square approximation of 3-D homogeneous and isotropic random field is investigated. The problem of statistical simulation of realizations of random fields in threedimensional space is considered. The algorithm for the receiving of this realization has been formulated, which has been constructed on the base the mean-square approximation of random fields estimator. It has been constructed the statistical model for the Gaussian random fields in three-dimensional space, which has been given by its statistical characteristics.


2002 ◽  
Vol 7 (1) ◽  
pp. 31-42
Author(s):  
J. Šaltytė ◽  
K. Dučinskas

The Bayesian classification rule used for the classification of the observations of the (second-order) stationary Gaussian random fields with different means and common factorised covariance matrices is investigated. The influence of the observed data augmentation to the Bayesian risk is examined for three different nonlinear widely applicable spatial correlation models. The explicit expression of the Bayesian risk for the classification of augmented data is derived. Numerical comparison of these models by the variability of Bayesian risk in case of the first-order neighbourhood scheme is performed.


2012 ◽  
Vol 44 (3) ◽  
pp. 603-616 ◽  
Author(s):  
F. Ballani ◽  
Z. Kabluchko ◽  
M. Schlather

We aim to link random fields and marked point processes, and, therefore, introduce a new class of stochastic processes which are defined on a random set in . Unlike for random fields, the mark covariance function of a random marked set is in general not positive definite. This implies that in many situations the use of simple geostatistical methods appears to be questionable. Surprisingly, for a special class of processes based on Gaussian random fields, we do have positive definiteness for the corresponding mark covariance function and mark correlation function.


Sign in / Sign up

Export Citation Format

Share Document