scholarly journals The mass–metallicity–star formation rate relation at $\boldsymbol {z \gtrsim 2}$ with 3D Hubble Space Telescope

2014 ◽  
Vol 440 (3) ◽  
pp. 2300-2312 ◽  
Author(s):  
F. Cullen ◽  
M. Cirasuolo ◽  
R. J. McLure ◽  
J. S. Dunlop ◽  
R. A. A. Bowler
2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


2018 ◽  
Vol 869 (2) ◽  
pp. L26 ◽  
Author(s):  
Madhooshi R. Senarath ◽  
Michael J. I. Brown ◽  
Michelle E. Cluver ◽  
John Moustakas ◽  
Lee Armus ◽  
...  

2014 ◽  
Vol 147 (5) ◽  
pp. 103 ◽  
Author(s):  
Volker Heesen ◽  
Elias Brinks ◽  
Adam K. Leroy ◽  
George Heald ◽  
Robert Braun ◽  
...  

2014 ◽  
Vol 782 (2) ◽  
pp. L23 ◽  
Author(s):  
Jens Hjorth ◽  
Christa Gall ◽  
Michał J. Michałowski

2019 ◽  
Vol 491 (3) ◽  
pp. 3891-3899 ◽  
Author(s):  
Jaehong Park ◽  
Nicolas Gillet ◽  
Andrei Mesinger ◽  
Bradley Greig

ABSTRACT Upcoming observations will probe the first billion years of our Universe in unprecedented detail. Foremost among these are 21-cm interferometry with the Hydrogen Epoch of Reionization Arrays (HERA) and the Square Kilometre Array (SKA), and high-z galaxy observations with the James Webb Space Telescope (JWST). Here, we quantify how observations from these instruments can be used to constrain the astrophysics of high-z galaxies. We generate several mock JWST luminosity functions (LFs) and SKA1 21-cm power spectra, which are consistent with current observations, but assume different properties for the unseen, ultrafaint galaxies driving the epoch of reionization (EoR). Using only JWST data, we predict up to a factor of 2–3 improvement (compared with Hubble Space Telescope, HST) in the fractional uncertainty of the star formation rate to halo mass relation and the turnover magnitude. Most parameters regulating the ultraviolet (UV) galaxy properties can be constrained at the level of ∼10 per cent or better, if either (i) we are able to better characterize systematic lensing uncertainties than currently possible; or (ii) the intrinsic LFs peak at magnitudes brighter than MUV ≲ −13. Otherwise, improvement over HST-based inference is modest. When combining with upcoming 21-cm observations, we are able to significantly mitigate degeneracies, and constrain all of our astrophysical parameters, even for our most pessimistic assumptions about upcoming JWST LFs. The 21-cm observations also result in an order of magnitude improvement in constraints on the EoR history.


Author(s):  
Takuya Hashimoto ◽  
Akio K Inoue ◽  
Ken Mawatari ◽  
Yoichi Tamura ◽  
Hiroshi Matsuo ◽  
...  

Abstract We present new ALMA observations and physical properties of a Lyman break galaxy at z = 7.15. Our target, B14-65666, has a bright ultra-violet (UV) absolute magnitude, MUV ≈ −22.4, and has been spectroscopically identified in Lyα with a small rest-frame equivalent width of ≈4 Å. A previous Hubble Space TElescope (HST) image has shown that the target is composed of two spatially separated clumps in the rest-frame UV. With ALMA, we have newly detected spatially resolved [O iii] 88 μm, [C ii] 158 μm, and their underlying dust continuum emission. In the whole system of B14-65666, the [O iii] and [C ii] lines have consistent redshifts of 7.1520 ± 0.0003, and the [O iii] luminosity, (34.4 ± 4.1) × 108 L⊙, is about three times higher than the [C ii] luminosity, (11.0 ± 1.4) × 108 L⊙. With our two continuum flux densities, the dust temperature is constrained to be Td ≈ 50–60 K under the assumption of a dust emissivity index of βd = 2.0–1.5, leading to a large total infrared luminosity of LTIR ≈ 1 × 1012 L⊙. Owing to our high spatial resolution data, we show that the [O iii] and [C ii] emission can be spatially decomposed into two clumps associated with the two rest-frame UV clumps whose spectra are kinematically separated by ≈200 km s−1. We also find these two clumps have comparable UV, infrared, [O iii], and [C ii] luminosities. Based on these results, we argue that B14-65666 is a starburst galaxy induced by a major merger. The merger interpretation is also supported by the large specific star formation rate (defined as the star formation rate per unit stellar mass), sSFR $= 260^{+119}_{-57}\:$Gyr−1, inferred from our SED fitting. Probably, a strong UV radiation field caused by intense star formation contributes to its high dust temperature and the [O iii]-to-[C ii] luminosity ratio.


Sign in / Sign up

Export Citation Format

Share Document