james webb space telescope
Recently Published Documents


TOTAL DOCUMENTS

539
(FIVE YEARS 44)

H-INDEX

17
(FIVE YEARS 0)



2022 ◽  
Vol 163 (2) ◽  
pp. 45
Author(s):  
G. H. Rieke ◽  
Kate Su ◽  
G. C. Sloan ◽  
E. Schlawin

Abstract A challenge in absolute calibration is to relate very bright stars with physical flux measurements to faint ones within range of modern instruments, e.g., those on large ground-based telescopes or the James Webb Space Telescope (JWST). We propose Sirius as the fiducial color standard. It is an A0V star that is slowly rotating and does not have infrared excesses due to either hot dust or a planetary debris disk; it also has a number of accurate (∼1%–2%) absolute flux measurements. We accurately transfer the near-infrared flux from Sirius to BD +60 1753, an unobscured early A-type star (A1V, V ≈ 9.6, E(B – V) ≈ 0.009) that is faint enough to serve as a primary absolute flux calibrator for JWST. Its near-infrared spectral energy distribution and that of Sirius should be virtually identical. We have determined its output relative to that of Sirius in a number of different ways, all of which give consistent results within ∼1%. We also transfer the calibration to GSPC P330-E, a well-calibrated close solar analog (G2V). We have emphasized the 2MASS K S band, since it represents a large number and long history of measurements, but the theoretical spectra (i.e., from CALSPEC) of these stars can be used to extend this result throughout the near- and mid-infrared.



Author(s):  
T. Böker ◽  
S. Arribas ◽  
N. Lützgendorf ◽  
C. Alves de Oliveira ◽  
T. L. Beck ◽  
...  


2021 ◽  
Vol 923 (2) ◽  
pp. 269
Author(s):  
Theodora Karalidi ◽  
Mark Marley ◽  
Jonathan J. Fortney ◽  
Caroline Morley ◽  
Didier Saumon ◽  
...  

Abstract Exoplanet and brown dwarf atmospheres commonly show signs of disequilibrium chemistry. In the James Webb Space Telescope (JWST) era, high-resolution spectra of directly imaged exoplanets will allow the characterization of their atmospheres in more detail, and allow systematic tests for the presence of chemical species that deviate from thermochemical equilibrium in these atmospheres. Constraining the presence of disequilibrium chemistry in these atmospheres as a function of parameters such as their effective temperature and surface gravity will allow us to place better constraints on the physics governing these atmospheres. This paper is part of a series of works presenting the Sonora grid of atmosphere models. In this paper, we present a grid of cloud-free, solar metallicity atmospheres for brown dwarfs and wide-separation giant planets with key molecular species such as CH4, H2O, CO, and NH3 in disequilibrium. Our grid covers atmospheres with T eff ∈ [500 K, 1300 K], log g ∈ [3.0, 5.5] (cgs) and an eddy diffusion parameter of log K zz = 2 , 4 and 7 (cgs). We study the effect of different parameters within the grid on the temperature and composition profiles of our atmospheres. We discuss their effect on the near-infrared colors of our model atmospheres and the detectability of CH4, H2O, CO, and NH3 using the JWST. We compare our models against existing MKO and Spitzer observations of brown dwarfs and verify the importance of disequilibrium chemistry for T dwarf atmospheres. Finally, we discuss how our models can help constrain the vertical structure and chemical composition of these atmospheres.



2021 ◽  
Vol 922 (2) ◽  
pp. L39
Author(s):  
Daniel J. Whalen ◽  
Mar Mezcua ◽  
Samuel J. Patrick ◽  
Avery Meiksin ◽  
Muhammad A. Latif

Abstract Direct-collapse black holes (DCBHs) forming at z ∼ 20 are currently the leading candidates for the seeds of the first quasars, over 200 of which have now been found at z > 6. Recent studies suggest that DCBHs could be detected in the near-infrared by the James Webb Space Telescope, Euclid, and the Roman Space Telescope. However, new radio telescopes with unprecedented sensitivities such as the Square Kilometre Array (SKA) and the Next-Generation Very Large Array (ngVLA) may open another window on the properties of DCBHs in the coming decade. Here we estimate the radio flux from DCBHs at birth at z = 8–20 with several fundamental planes of black hole accretion. We find that they could be detected at z ∼ 8 by the SKA-FIN all-sky survey. Furthermore, SKA and ngVLA could discover 106–107 M ⊙ BHs out to z ∼ 20, probing the formation pathways of the first quasars in the universe.



Physics World ◽  
2021 ◽  
Vol 34 (11) ◽  
pp. 15i-15i
Author(s):  
Michael Banks

A member of NASA’s Astrophysics Advisory Committee has resigned over the agency’s handling of an investigation into whether the James Webb Space Telescope (JWST) should be renamed.



2021 ◽  
Vol 923 (1) ◽  
pp. 127
Author(s):  
Robert Nikutta ◽  
Enrique Lopez-Rodriguez ◽  
Kohei Ichikawa ◽  
N. A. Levenson ◽  
Christopher Packham ◽  
...  

Abstract Recent infrared interferometric observations revealed sub-parsec scale dust distributions around active galactic nuclei (AGNs). Using images of Clumpy torus models and NGC 1068 as an example, we demonstrate that the near- and mid-infrared nuclear emission of some nearby AGNs will be resolvable in direct imaging with the next generation of 30 m telescopes, potentially breaking degeneracies from previous studies that used integrated spectral energy distributions of unresolved AGN tori. To that effect we model wavelength-dependent point spread functions from the pupil images of various telescopes: James Webb Space Telescope, Keck, Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope. We take into account detector pixel scales and noise, and apply deconvolution techniques for image recovery. We also model 2D maps of the 10 μm silicate feature strength, S 10, of NGC 1068 and compare with observations. When the torus is resolved, we find S 10 variations across the image. However, to reproduce the S 10 measurements of an unresolved torus a dusty screen of A V > 9 mag is required. We also fit the first resolved image of the K-band emission in NGC 1068 recently published by the GRAVITY Collaboration, deriving likely model parameters of the underlying dust distribution. We find that both (1) an elongated structure suggestive of a highly inclined emission ring, and (2) a geometrically thin but optically thick flared disk where the emission arises from a narrow strip of hot cloud surface layers on the far inner side of the torus funnel, can explain the observations.



2021 ◽  
Vol 923 (2) ◽  
pp. 144
Author(s):  
Caprice L. Phillips ◽  
Ji Wang ◽  
Sarah Kendrew ◽  
Thomas P. Greene ◽  
Renyu Hu ◽  
...  

Abstract Exoplanets with radii between those of Earth and Neptune have stronger surface gravity than Earth, and can retain a sizable hydrogen-dominated atmosphere. In contrast to gas giant planets, we call these planets gas dwarf planets. The James Webb Space Telescope (JWST) will offer unprecedented insight into these planets. Here, we investigate the detectability of ammonia (NH3, a potential biosignature) in the atmospheres of seven temperate gas dwarf planets using various JWST instruments. We use petitRadTRANS and PandExo to model planet atmospheres and simulate JWST observations under different scenarios by varying cloud conditions, mean molecular weights (MMWs), and NH3 mixing ratios. A metric is defined to quantify detection significance and provide a ranked list for JWST observations in search of biosignatures in gas dwarf planets. It is very challenging to search for the 10.3–10.8 μm NH3 feature using eclipse spectroscopy with the Mid-Infrared Instrument (MIRI) in the presence of photon and a systemic noise floor of 12.6 ppm for 10 eclipses. NIRISS, NIRSpec, and MIRI are feasible for transmission spectroscopy to detect NH3 features from 1.5–6.1 μm under optimal conditions such as a clear atmosphere and low MMWs for a number of gas dwarf planets. We provide examples of retrieval analyses to further support the detection metric that we use. Our study shows that searching for potential biosignatures such as NH3 is feasible with a reasonable investment of JWST time for gas dwarf planets given optimal atmospheric conditions.



2021 ◽  
Vol 257 (2) ◽  
pp. 68
Author(s):  
Mauro Stefanon ◽  
Ivo Labbé ◽  
Pascal A. Oesch ◽  
Stephane De Barros ◽  
Valentino Gonzalez ◽  
...  

Abstract We present the deepest Spitzer/InfraRed Array Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm wide-area mosaics yet over the Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S fields as part of the GOODS Reionization Era wide-Area Treasury from Spitzer (GREATS) project. We reduced and mosaicked in a self-consistent way observations taken by the 11 different Spitzer/IRAC programs over the two GOODS fields from 12 yr of Spitzer cryogenic and warm-mission data. The cumulative depth in the 3.6 μm and 4.5 μm bands amounts to ∼4260 hr, ∼1220 hr of which are new very deep observations from the GREATS program itself. In the deepest area, the full-depth mosaics reach ≳200 hr over an area of ∼100 arcmin2, corresponding to a sensitivity of ∼29 AB magnitude at 3.6 μm (1σ for point sources). Archival cryogenic 5.8 μm and 8.0 μm band data (a cumulative 976 hr) are also included in the release. The mosaics are projected onto the tangential plane of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey/GOODS at a 0.″3 pixel−1 scale. This paper describes the methodology enabling, and the characteristics of, the public release of the mosaic science images, the corresponding coverage maps in the four IRAC bands, and the empirical point-spread functions (PSFs). These PSFs enable mitigation of the source blending effects by taking into account the complex position-dependent variation in the IRAC images. The GREATS data products are in the Infrared Science Archive. We also release the deblended 3.6–8.0 μm photometry 9192 Lyman-break galaxies at z ∼ 3.5–10. GREATS will be the deepest mid-infrared imaging until the James Webb Space Telescope and, as such, constitutes a major resource for characterizing early galaxy assembly.



2021 ◽  
Vol 923 (1) ◽  
pp. 8
Author(s):  
Charles L. Steinhardt ◽  
Christian Kragh Jespersen ◽  
Nora B. Linzer

Abstract One of the primary goals for the upcoming James Webb Space Telescope is to observe the first galaxies. Predictions for planned and proposed surveys have typically focused on average galaxy counts, assuming a random distribution of galaxies across the observed field. The first and most-massive galaxies, however, are expected to be tightly clustered, an effect known as cosmic variance. We show that cosmic variance is likely to be the dominant contribution to uncertainty for high-redshift mass and luminosity functions, and that median high-redshift and high-mass galaxy counts for planned observations lie significantly below average counts. Several different strategies are considered for improving our understanding of the first galaxies, including adding depth, area, and independent pointings. Adding independent pointings is shown to be the most efficient both for discovering the single highest-redshift galaxy and also for constraining mass and luminosity functions.



Sign in / Sign up

Export Citation Format

Share Document