scholarly journals Cosmological parameter inference from galaxy clustering: the effect of the posterior distribution of the power spectrum

2015 ◽  
Vol 455 (3) ◽  
pp. 2573-2581 ◽  
Author(s):  
B. Kalus ◽  
W. J. Percival ◽  
L. Samushia
2020 ◽  
Vol 496 (3) ◽  
pp. 3862-3869 ◽  
Author(s):  
Anatoly Klypin ◽  
Francisco Prada ◽  
Joyce Byun

ABSTRACT Making cosmological inferences from the observed galaxy clustering requires accurate predictions for the mean clustering statistics and their covariances. Those are affected by cosmic variance – the statistical noise due to the finite number of harmonics. The cosmic variance can be suppressed by fixing the amplitudes of the harmonics instead of drawing them from a Gaussian distribution predicted by the inflation models. Initial realizations also can be generated in pairs with 180○ flipped phases to further reduce the variance. Here, we compare the consequences of using paired-and-fixed versus Gaussian initial conditions on the average dark matter clustering and covariance matrices predicted from N-body simulations. As in previous studies, we find no measurable differences between paired-and-fixed and Gaussian simulations for the average density distribution function, power spectrum, and bispectrum. Yet, the covariances from paired-and-fixed simulations are suppressed in a complicated scale- and redshift-dependent way. The situation is particularly problematic on the scales of Baryon acoustic oscillations where the covariance matrix of the power spectrum is lower by only $\sim 20{{\ \rm per\ cent}}$ compared to the Gaussian realizations, implying that there is not much of a reduction of the cosmic variance. The non-trivial suppression, combined with the fact that paired-and-fixed covariances are noisier than from Gaussian simulations, suggests that there is no path towards obtaining accurate covariance matrices from paired-and-fixed simulations – result, that is theoretically expected and accepted in the field. Because the covariances are crucial for the observational estimates of galaxy clustering statistics and cosmological parameters, paired-and-fixed simulations, though useful for some applications, cannot be used for the production of mock galaxy catalogues.


2020 ◽  
Vol 497 (2) ◽  
pp. 2213-2226
Author(s):  
Arrykrishna Mootoovaloo ◽  
Alan F Heavens ◽  
Andrew H Jaffe ◽  
Florent Leclercq

ABSTRACT In this paper, we propose a Gaussian Process (GP) emulator for the calculation both of tomographic weak lensing band powers, and of coefficients of summary data massively compressed with the MOPED algorithm. In the former case cosmological parameter inference is accelerated by a factor of ∼10–30 compared with Boltzmann solver class applied to KiDS-450 weak lensing data. Much larger gains of order 103 will come with future data, and MOPED with GPs will be fast enough to permit the Limber approximation to be dropped, with acceleration in this case of ∼105. A potential advantage of GPs is that an error on the emulated function can be computed and this uncertainty incorporated into the likelihood. However, it is known that the GP error can be unreliable when applied to deterministic functions, and we find, using the Kullback–Leibler divergence between the emulator and class likelihoods, and from the uncertainties on the parameters, that agreement is better when the GP uncertainty is not used. In future, weak lensing surveys such as Euclid, and the Legacy Survey of Space and Time, will have up to ∼104 summary statistics, and inference will be correspondingly more challenging. However, since the speed of MOPED is determined not the number of summary data, but by the number of parameters, MOPED analysis scales almost perfectly, provided that a fast way to compute the theoretical MOPED coefficients is available. The GP provides such a fast mechanism.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
José Ramón Bermejo-Climent ◽  
Mario Ballardini ◽  
Fabio Finelli ◽  
Daniela Paoletti ◽  
Roy Maartens ◽  
...  

1996 ◽  
Vol 471 (2) ◽  
pp. 617-635 ◽  
Author(s):  
Huan Lin ◽  
Robert P. Kirshner ◽  
Stephen A. Shectman ◽  
Stephen D. Landy ◽  
Augustus Oemler ◽  
...  

2021 ◽  
Vol 2021 (11) ◽  
pp. 027
Author(s):  
Benedict Bahr-Kalus ◽  
Daniele Bertacca ◽  
Licia Verde ◽  
Alan Heavens

Abstract The peculiar motion of the observer, if not accurately accounted for, is bound to induce a well-defined clustering signal in the distribution of galaxies. This signal is related to the Kaiser rocket effect. Here we examine the amplitude and form of this effect, both analytically and numerically, and discuss possible implications for the analysis and interpretation of forthcoming cosmological surveys. For an idealistic cosmic variance dominated full-sky survey with a Gaussian selection function peaked at z ∼ 1.5 it is a > 5σ effect and it can in principle bias very significantly the inference of cosmological parameters, especially for primordial non-Gaussianity. For forthcoming surveys, with realistic masks and selection functions, the Kaiser rocket is not a significant concern for cosmological parameter inference except perhaps for primordial non-Gaussianity studies. However, it is a systematic effect, whose origin, nature and imprint on galaxy maps are well known and thus should be subtracted or mitigated. We present several approaches to do so.


Sign in / Sign up

Export Citation Format

Share Document