scholarly journals Mapping the core mass function to the initial mass function

2015 ◽  
Vol 450 (4) ◽  
pp. 4137-4149 ◽  
Author(s):  
Dávid Guszejnov ◽  
Philip F. Hopkins
2018 ◽  
Vol 14 (S345) ◽  
pp. 328-329
Author(s):  
Gabor I. Herbst-Kiss ◽  
Joao Alves

AbstractThe initial mass function (IMF) is a profoundly studied subject, however its origin is still unclear and heavily disputed. The Core Mass Function (CMF) has a remarkable resemblance to a shifted IMF along the mass axis of a factor of 3. This CMF has been observed amongst others in the Pipe Nebula, a calm molecular cloud at approximately 130 pc. We study the origin of the CMF under the assumption that collisions and merging of prestellar cores shape the CMF. We present our preliminary results of core collisions for the well known FeSt 1-457.


2010 ◽  
Vol 6 (S270) ◽  
pp. 151-158
Author(s):  
Ralph E. Pudritz

AbstractWe review computational approaches to understanding the origin of the Initial Mass Function (IMF) during the formation of star clusters. We examine the role of turbulence, gravity and accretion, equations of state, and magnetic fields in producing the distribution of core masses - the Core Mass Function (CMF). Observations show that the CMF is similar in form to the IMF. We focus on feedback processes such as stellar dynamics, radiation, and outflows can reduce the accreted mass to give rise to the IMF. Numerical work suggests that filamentary accretion may play a key role in the origin of the IMF.


2020 ◽  
Vol 497 (4) ◽  
pp. 4517-4534
Author(s):  
Rachel A Smullen ◽  
Kaitlin M Kratter ◽  
Stella S R Offner ◽  
Aaron T Lee ◽  
Hope How-Huan Chen

ABSTRACT We investigate the time evolution of dense cores identified in molecular cloud simulations using dendrograms, which are a common tool to identify hierarchical structure in simulations and observations of star formation. We develop an algorithm to link dendrogram structures through time using the three-dimensional density field from magnetohydrodynamical simulations, thus creating histories for all dense cores in the domain. We find that the population-wide distributions of core properties are relatively invariant in time, and quantities like the core mass function match with observations. Despite this consistency, an individual core may undergo large (>40 per cent), stochastic variations due to the redefinition of the dendrogram structure between time-steps. This variation occurs independent of environment and stellar content. We identify a population of short-lived (<200 kyr) overdensities masquerading as dense cores that may comprise $\sim\!20$ per cent of any time snapshot. Finally, we note the importance of considering the full history of cores when interpreting the origin of the initial mass function; we find that, especially for systems containing multiple stars, the core mass defined by a dendrogram leaf in a snapshot is typically less than the final system stellar mass. This work reinforces that there is no time-stable density contour that defines a star-forming core. The dendrogram itself can induce significant structure variation between time-steps due to small changes in the density field. Thus, one must use caution when comparing dendrograms of regions with different ages or environment properties because differences in dendrogram structure may not come solely from the physical evolution of dense cores.


2020 ◽  
Vol 494 (1) ◽  
pp. L53-L58 ◽  
Author(s):  
Eoin J Farrell ◽  
Jose H Groh ◽  
Georges Meynet ◽  
J J Eldridge

ABSTRACT We show that it is not possible to determine the final mass Mfin of a red supergiant (RSG) at the pre-supernova (SN) stage from its luminosity L and effective temperature Teff alone. Using a grid of stellar models, we demonstrate that for a given value of L and Teff, an RSG can have a range of Mfin as wide as 3 to 45 M⊙. While the probability distribution within these limits is not flat, any individual determination of Mfin for an RSG will be degenerate. This makes it difficult to determine its evolutionary history and to map Mfin to an initial mass. Single stars produce a narrower range that is difficult to accurately determine without making strong assumptions about mass-loss, convection, and rotation. Binaries would produce a wider range of RSG Mfin. However, the final Helium core mass $M_{\operatorname{He-core}}$ is well determined by the final luminosity and we find $\log (M_{\operatorname{He-core}}/\mathrm{M}_{\odot }) = 0.659 \log (L/\mathrm{L}_{\odot }) -2.630$. Using this relationship, we derive $M_{\operatorname{He-core}}$ for directly imaged SN progenitors and one failed SN candidate. The value of Mfin for stripped star progenitors of SNe IIb is better constrained by L and Teff due to the dependence of Teff on the envelope mass Menv for Menv ≲ 1 M⊙. Given the initial mass function, our results apply to the majority of progenitors of core-collapse SNe, failed SNe, and direct-collapse black holes.


1998 ◽  
Vol 11 (1) ◽  
pp. 425-426
Author(s):  
Takenori Nakano

The initial mass function of stars (IMF) at small masses depends on several factors. First, it depends on the mass function of cloud cores in which stars form. Second, there must be a lower limit to the core mass for contraction; very small mass cores may not contract even if they exist. This must affect greatly the IMF near its lower end. Third, not all core matter may become stars; we must determine the stellar mass M*, or the star formation efficiency M*/Mcc, as a function of the mass of the cloud core, Mcc. In this paper we discuss the second and third points.


Sign in / Sign up

Export Citation Format

Share Document