cloud core
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 15)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Vol 3 (3) ◽  
pp. 224-242
Author(s):  
J. Samuel Manoharan

In recent times, computing technologies have moved over to a new dimension with the advent of cloud platforms which provide seamless rendering of required services to consumers either in static or dynamic state. In addition, the nature of data being handled in today’s scenario has also become sophisticated as mostly real time data acquisition systems equipped with High-Definition capture (HD) have become common. Lately, cloud systems have also become prone to computing overheads owing to huge volume of data being imparted on them especially in real time applications. To assist and simplify the computational complexity of cloud systems, FoG platforms are being integrated into cloud interfaces to streamline and provide computing at the edge nodes rather at the cloud core processors, thus accounting for reduction of load overhead on cloud core processors. This research paper proposes a Two Stage Load Optimizer (TSLO) implemented as a double stage optimizer with one being deployed at FoG level and the other at the Cloud level. The computational complexity analysis is extensively done and compared with existing benchmark methods and superior performance of the suggested method is observed and reported.


2021 ◽  
Vol 21 (18) ◽  
pp. 14039-14058
Author(s):  
Sonja Drueke ◽  
Daniel J. Kirshbaum ◽  
Pavlos Kollias

Abstract. This second part of a numerical study on shallow-cumulus dilution focuses on the sensitivity of cloud dilution to changes in the vertical wind profile. Insights are obtained through large-eddy simulations of maritime and continental cloud fields. In these simulations, the speed of the initially uniform geostrophic wind and the strength of geostrophic vertical wind shear in the cloud and subcloud layer are varied. Increases in the cloud-layer vertical wind shear (up to 9 ms-1km-1) lead to 40 %–50 % larger cloud-core dilution rates compared to their respective unsheared counterparts. When the background wind speed, on the other hand, is enhanced by up to 10 m s−1 and subcloud-layer vertical wind shear develops or is initially prescribed, the dilution rate decreases by up to 25 %. The sensitivities of the dilution rate are linked to the updraft strength and the properties of the entrained air. Increases in the wind speed or vertical wind shear result in lower vertical velocities across all sets of experiments with stronger reductions in the cloud-layer wind shear simulation (27 %–47 %). Weaker updrafts are exposed to mixing with the drier surrounding air for a longer time period, allowing more entrainment to occur (i.e., the “core-exposure effect”). However, reduced vertical velocities, in concert with increased cloud-layer turbulence, also assist in widening the humid shell surrounding the cloud cores, leading to entrainment of more humid air (i.e., the “core–shell dilution effect”). In the experiments with cloud-layer vertical wind shear, the core-exposure effect dominates and the cloud-core dilution increases with increasing shear. Conversely, when the wind speed is increased and subcloud-layer vertical wind shear develops or is imposed, the core–shell dilution effect dominates to induce a buffering effect. The sensitivities are generally stronger in the maritime simulations, where weaker sensible heat fluxes lead to narrower, more tilted, and, therefore, more suppressed cumuli when cloud-layer shear is imposed. Moreover, in the experiments with subcloud wind shear, the weaker baseline turbulence in the maritime case allows for a larger turbulence enhancement, resulting in a widening of the transition zones between the cores and their environment, leading to the entrainment of more humid air.


Author(s):  
Sunmyon Chon ◽  
Kazuyuki Omukai ◽  
Raffaella Schneider

Abstract We study star cluster formation in a low-metallicity environment using three dimensional hydrodynamic simulations. Starting from a turbulent cloud core, we follow the formation and growth of protostellar systems with different metallicities ranging from 10−6 to 0.1 Z⊙. The cooling induced by dust grains promotes fragmentation at small scales and the formation of low-mass stars with M* ∼ 0.01–0.1 M⊙ While the number of low-mass stars increases with metallicity, when Z/Z⊙ ≳ 10−5. the stellar mass distribution is still top-heavy for Z/Z⊙ ≲ 10−2 compared to the Chabrier initial mass function (IMF). In these cases, star formation begins after the turbulent motion decays and a single massive cloud core monolithically collapses to form a central massive stellar system. The circumstellar disk preferentially feeds the mass to the central massive stars, making the mass distribution top-heavy. When Z/Z⊙ = 0.1, collisions of the turbulent flows promote the onset of the star formation and a highly filamentary structure develops owing to efficient fine-structure line cooling. In this case, the mass supply to the massive stars is limited by the local gas reservoir and the mass is shared among the stars, leading to a Chabrier-like IMF. We conclude that cooling at the scales of the turbulent motion promotes the development of the filamentary structure and works as an important factor leading to the present-day IMF.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Estri Diniyati ◽  
Yosafat Donni Haryanto

Abstract—Indonesia located in the equatorial region which has potential to have a major impact on atmospheric physical conditions during extreme weather events such as the Mesoscale Convective Complex (MCC). MCC is a phenomenon that was first discovered by (Maddox, 1980) where this phenomenon is characterized by the presence of a quasi-circular (almost circular) cloud shield with an eccentricity of 0.7 with a cloud cover area of 100,000 km², the cloud core area covers 50,000 km² and cloud top temperature IR1 -52 ℃. These cloud conditions last for a minimum of 6 hours and cause severe weather and extreme rain. This study aims to identify the MCC phenomenon in the Karimata Strait on 19-20 September 2020 which caused heavy rains in parts of the West coast of Kalimantan and Bangka Island using Himawari-8 Satellite imagery data and the MATLAB application. The results showed that on September 19, MCC was identified at 09.00-19.00 UTC, then on September 20, MCC was identified at 16.00-23.00 UTC. At the time of the MCC event, Bangka and Pontianak regions experienced extreme rains recorded on AWS Digi Stamet Pontianak with rainfall reaching 43.4 mm/hour and ARG Lubuk Besar Bangka Tengah with rainfall reaching 16.8 mm/hour. Keywords: mesoscale convective complex (MCC), himawari-8, MATLAB Abstrak—Indonesia merupakan negara yang terletak diwilayah ekuator dimana berpotensi memiliki dampak besar terhadap kondisi fisik atmosfer saat terjadi cuaca ekstrem seperti Mesoscale Convective Complex (MCC). MCC merupakan fenomena yang pertama kali ditemukan oleh (Maddox, 1980) dimana fenomena ini dicirikan dengan adanya perisai awan yang berbentuk quasi circular (hampir lingkaran) dengan eksentrisitas ≥ 0,7 dengan luas area selimut awan ≥ 100.000 km² , luas area inti awan mencakup ≥ 50.000 km² serta suhu puncak awan IR1 ≤ -52 ℃. Kondisi awan tersebut bertahan minimun selama 6 jam dan menyebabkan cuaca buruk dan hujan ekstrem. Penelitian ini bertujuan untuk mengidentifikasi fenomena MCC di Selat Karimata pada Tanggal 19-20 September 2020 yang menyebabkan hujan lebat di sebagian wilayah Kalimantan bagian pesisir Barat dan Pulau Bangka menggunakan data citra Satelit Himawari-8 dan aplikasi MATLAB. Hasil penelitian menunjukkan pada tanggal 19 September, MCC teridentifikasi pada pukul 09.00-19.00 UTC selanjutnya tanggal 20 September 2020 MCC teridentifikasi pada pukul 16.00-23.00 UTC. Pada saat peristiwa MCC, wilayah Bangka dan Pontianak mengalami hujan ekstrem yang tercatat pada AWS Digi Stasiun Meteorologi Pontianak dengan curah hujan mencapai 43,4 mm/jam dan ARG Lubuk Besar Bangka Tengah dengan curah hujan mencapai 16,8 mm/jam. Kata kunci: mesoscale convective complex (MCC), himawari-8, MATLAB


2021 ◽  
Author(s):  
Sonja Drueke ◽  
Daniel J. Kirshbaum ◽  
Pavlos Kollias

Abstract. This second part of a numerical study on shallow-cumulus dilution focuses on the sensitivity of cloud dilution to changes in the vertical wind profile. Insights are obtained through large-eddy simulations of maritime and continental cloud fields. In these simulations, the speed of the initially uniform geostrophic wind, and the strength of geostrophic vertical wind shear in the cloud and subcloud layer are varied. Increases in the cloud-layer vertical wind shear (up to 9 m/s/km) lead to 40–50 % larger cloud-core dilution rates compared to their respective unsheared counterparts. When the background wind speed, on the other hand, is enhanced by up to 10 m/s and subcloud-layer vertical wind shear develops or is initially prescribed, the dilution rate decreases by up to 25 %. The sensitivities of the dilution rate are linked to the updraft strength and the properties of the entrained air. Increases in the wind speed or vertical wind shear result in lower vertical velocities across all sets of experiments with stronger reductions in the cloud-layer wind shear simulation (27–47 %). Weaker updrafts are exposed to mixing with the drier surrounding air for a longer time period, allowing more entrainment to occur (i.e., the "core exposure effect"). However, reduced vertical velocities, in concert with increased cloud-layer turbulence, also assist in widening the humid shell surrounding the cloud cores, leading to entrainment of more humid air (i.e., the "core-shell dilution effect"). In the experiments with cloud-layer vertical wind shear, the core exposure effect dominates and the cloud-core dilution increases with increasing shear. Conversely, when the wind speed is increased and subcloud-layer vertical wind shear develops or is imposed, the core-shell dilution effect dominates to induce a purifying effect. The sensitivities are generally stronger in the maritime simulations, where weaker sensible heat fluxes lead to narrower, more tilted, and, therefore, more suppressed cumuli when cloud-layer shear is imposed. Moreover, in the experiments with subcloud wind shear, the weaker baseline turbulence in the maritime case allows for a larger turbulence enhancement, resulting in a widening of the transition zones between the cores and their environment, leading to the entrainment of more humid air.


Author(s):  
Mahen Konwar ◽  
Thara Prabhakaran ◽  
Alexander Khain ◽  
Mark Pinsky

AbstractThis study investigates the microphysical parameters and shapes of droplet size distributions (DSDs) along three aircraft traverses of developing convective clouds during Cloud Aerosol Interactions and Precipitation Enhancement EXperiment (CAIPEEX) 2015 at a sampling frequency of 25 Hz. The droplet number concentration (Nc, cm−3), and liquid water content (LWC, gm−3) present steep gradients within a few tens of meters’ zones near the cloud edges and relatively gentle gradients in the strong updraft zones. Sometimes, the horizontal LWC distribution resembles a trapezoid-like shape with steep LWC and Nc gradients near the cloud edges. The LWC maximums (LWCmax) are lower than the adiabatic LWC, but the high adiabatic fractions in the cloud core indicate low dilution. High LWC/LWCmax, largest droplets, and narrow and similarly-shaped DSDs are found in the regions of high updrafts. Zones of low LWC/LWCmax are found close to the cloud edges, where DSDs are highly diverse, containing both large and small droplets. Finally, we analyze the mixing diagrams.Significant in-phase turbulent fluctuations in LWC and Nc were found. The effective radii change slightly across cloud updraft zones but decrease at the low LWC/LWCmax ratio zone close to cloud edges. The spectra of LWC and Nc obey Kolmogorov -5/3 turbulence law. The radii of the correlation of LWC and Nc in updraft zones are of several tens of meters. Filaments up to 120-175 m in size are also noticed.


Author(s):  
Vishnu Nair ◽  
Thijs Heus ◽  
Maarten van Reeuwijk

AbstractInterfaces at the edge of an idealised, non-precipitating, warm cloud are studied using Direct Numerical Simulation (DNS) complemented with a Lagrangian particle tracking routine. Once a shell has formed, four zones can be distinguished: the cloud core, visible shell, invisible shell and the environment. The union of the visible and invisible regions is the shell commonly referred to in literature. The boundary between the invisible shell and the environment is the Turbulent-NonTurbulent Interface (TNTI) which is typically not considered in cloud studies. Three million particles were seeded homogeneously across the domain and properties were recorded along individual trajectories. The results demonstrate that the traditional cloud boundary (separating cloudy and non-cloudy regions using thresholds applied on liquid condensate or updraft velocity) are some distance away from the TNTI. Furthermore, there is no dynamic difference between the traditional liquid-condensate boundary and the region extending to the TNTI. However, particles crossing the TNTI exhibit a sharp jump in enstrophy and a smooth increase in buoyancy. The traditional cloud boundary coincides with the location of minimum buoyancy in the shell. The shell pre-mixes the entraining and detraining air and analysis reveals a highly skewed picture of entrainment and detrainment at the traditional cloud boundary. A preferential entrainment of particles with velocity and specific humidity higher than the mean values in the shell is observed. Large-eddy simulation of a more realistic setup detects an interface with similar properties using the same thresholds as in the DNS, indicating that the DNS results extrapolate beyond their idealised conditions.


2020 ◽  
Vol 20 (21) ◽  
pp. 13217-13239
Author(s):  
Sonja Drueke ◽  
Daniel J. Kirshbaum ◽  
Pavlos Kollias

Abstract. Cumulus entrainment, and its consequent dilution of buoyant cloud cores, strongly regulates the life cycle of shallow cumuli yet remains poorly understood. Herein, new insights into this problem are obtained through large-eddy simulations that systematically investigate the sensitivity of shallow-cumulus dilution to cloud-layer relative humidity (RH), cloud- and subcloud-layer depths, and continentality (i.e., the land–ocean contrast). The simulated cloud-core dilution is found to be strongly sensitive to continentality, with fractional dilution rates twice as large over the ocean as over land. Using a similarity theory based on the turbulent-kinetic-energy (TKE) budget, the reduced cloud-core dilution over land is attributed to larger cloud-base mass flux (mb), driven by stronger surface heating and subcloud turbulence. As mb increases, the fractional dilution rate must decrease to maintain energetic equilibrium. A positive sensitivity is also found to cloud-layer RH, with the core dilution increasing by 25 %–50 % for a 10 % enhancement in RH. This sensitivity is interpreted using the buoyancy-sorting hypothesis, in that mixtures of cloud and environmental air are more likely to become negatively buoyant and detrain (rather than diluting the cloud core) in drier cloud layers. By contrast, the sensitivities of (marine) shallow-cumulus dilution to cloud- and subcloud-layer depths are weak, with a 3 % decrease for a doubling for the former and a 4 % reduction in dilution for a 50 % deeper subcloud layer. These surprisingly weak sensitivities are readily explained by offsetting effects in the TKE similarity theory. Altogether, these experimental findings provide useful, though still incomplete, guidance for flow-dependent shallow-cumulus entrainment formulations in large-scale models.


2020 ◽  
Vol 499 (2) ◽  
pp. 1805-1822
Author(s):  
P W Lucas ◽  
J Elias ◽  
S Points ◽  
Z Guo ◽  
L C Smith ◽  
...  

ABSTRACT We report the discovery of a mid-infrared outburst in a young stellar object (YSO) with an amplitude close to 8 mag at λ ≈ 4.6 μm. WISEA J142238.82−611553.7 is one of 23 highly variable Wide-field Infrared Survey Explorer (WISE) sources discovered in a search of infrared dark clouds (IRDCs). It lies within the small IRDC G313.671−0.309 (d ≈2.6 kpc), seen by the Herschel/Hi-Gal survey as a compact massive cloud core that may have been measurably warmed by the event. Pre-outburst data from Spitzer in 2004 suggest it is a class I YSO, a view supported by observation of weak 2.12 μm H2 emission in an otherwise featureless red continuum spectrum in 2019 (6 mag below the peak in Ks). Spitzer, WISE, and VISTA Variables in the Via Lactea (VVV) data show that the outburst began by 2006 and has a duration >13 yr, with a fairly flat peak from 2010 to 2014. The low pre-outburst luminosity implies a low-mass progenitor. The outburst luminosity of a few × 102 L⊙ is consistent with an accretion rate $\dot{M} \approx 10^{-4}$ M⊙yr−1, comparable to a classical FU Orionis event. The 4.6 μm peak in 2010 implies T = 800–1000 K and a disc radial location R ≈ 4.5 au for the emitting region. The colour evolution suggests subsequent progression outwards. The apparent absence of the hotter matter expected in thermal instability or MRI models may be due to complete obscuration of the innermost disc, e.g. by an edge-on disc view. Alternatively, disc fragmentation/infalling fragment models might more naturally explain a mid-infrared peak, though this is not yet clear.


Sign in / Sign up

Export Citation Format

Share Document