scholarly journals Simulations of the IMF in Clusters

2010 ◽  
Vol 6 (S270) ◽  
pp. 151-158
Author(s):  
Ralph E. Pudritz

AbstractWe review computational approaches to understanding the origin of the Initial Mass Function (IMF) during the formation of star clusters. We examine the role of turbulence, gravity and accretion, equations of state, and magnetic fields in producing the distribution of core masses - the Core Mass Function (CMF). Observations show that the CMF is similar in form to the IMF. We focus on feedback processes such as stellar dynamics, radiation, and outflows can reduce the accreted mass to give rise to the IMF. Numerical work suggests that filamentary accretion may play a key role in the origin of the IMF.

1998 ◽  
Vol 11 (1) ◽  
pp. 425-426
Author(s):  
Takenori Nakano

The initial mass function of stars (IMF) at small masses depends on several factors. First, it depends on the mass function of cloud cores in which stars form. Second, there must be a lower limit to the core mass for contraction; very small mass cores may not contract even if they exist. This must affect greatly the IMF near its lower end. Third, not all core matter may become stars; we must determine the stellar mass M*, or the star formation efficiency M*/Mcc, as a function of the mass of the cloud core, Mcc. In this paper we discuss the second and third points.


2010 ◽  
Vol 6 (S270) ◽  
pp. 255-262 ◽  
Author(s):  
Ph. André ◽  
A. Men'shchikov ◽  
V. Könyves ◽  
D. Arzoumanian

AbstractWe briefly review ground-based (sub)millimeter dust continuum observations of the prestellar core mass function (CMF) and its connection to the stellar initial mass function (IMF). We also summarize the first results obtained on this topic from the Herschel Gould Belt survey, one of the largest key projects with the Herschel Space Observatory. Our early findings with Herschel confirm the existence of a close relationship between the CMF and the IMF. Furthermore, they suggest a scenario according to which the formation of prestellar cores occurs in two main steps: 1) complex networks of long, thin filaments form first, probably as a result of interstellar MHD turbulence; 2) the densest filaments then fragment and develop prestellar cores via gravitational instability.


2020 ◽  
Vol 497 (4) ◽  
pp. 4517-4534
Author(s):  
Rachel A Smullen ◽  
Kaitlin M Kratter ◽  
Stella S R Offner ◽  
Aaron T Lee ◽  
Hope How-Huan Chen

ABSTRACT We investigate the time evolution of dense cores identified in molecular cloud simulations using dendrograms, which are a common tool to identify hierarchical structure in simulations and observations of star formation. We develop an algorithm to link dendrogram structures through time using the three-dimensional density field from magnetohydrodynamical simulations, thus creating histories for all dense cores in the domain. We find that the population-wide distributions of core properties are relatively invariant in time, and quantities like the core mass function match with observations. Despite this consistency, an individual core may undergo large (>40 per cent), stochastic variations due to the redefinition of the dendrogram structure between time-steps. This variation occurs independent of environment and stellar content. We identify a population of short-lived (<200 kyr) overdensities masquerading as dense cores that may comprise $\sim\!20$ per cent of any time snapshot. Finally, we note the importance of considering the full history of cores when interpreting the origin of the initial mass function; we find that, especially for systems containing multiple stars, the core mass defined by a dendrogram leaf in a snapshot is typically less than the final system stellar mass. This work reinforces that there is no time-stable density contour that defines a star-forming core. The dendrogram itself can induce significant structure variation between time-steps due to small changes in the density field. Thus, one must use caution when comparing dendrograms of regions with different ages or environment properties because differences in dendrogram structure may not come solely from the physical evolution of dense cores.


2018 ◽  
Vol 14 (S345) ◽  
pp. 328-329
Author(s):  
Gabor I. Herbst-Kiss ◽  
Joao Alves

AbstractThe initial mass function (IMF) is a profoundly studied subject, however its origin is still unclear and heavily disputed. The Core Mass Function (CMF) has a remarkable resemblance to a shifted IMF along the mass axis of a factor of 3. This CMF has been observed amongst others in the Pipe Nebula, a calm molecular cloud at approximately 130 pc. We study the origin of the CMF under the assumption that collisions and merging of prestellar cores shape the CMF. We present our preliminary results of core collisions for the well known FeSt 1-457.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 708-708
Author(s):  
Philippe André ◽  
Vera Könyves ◽  
Arabindo Roy ◽  
Doris Arzoumanian

AbstractThe origin of the stellar initial mass function (IMF) is one of the most debated issues in astrophysics. Two major features of the IMF are 1) a fairly robust power-law slope at the high-mass end (Salpeter 1955), and 2) a broad peak around ~ 0.3 M⊙ corresponding to a characteristic stellar mass scale (cf. Elmegreen et al. 2008). In recent years, the dominant theoretical model proposed to account for these features has been the “gravo-turbulent fragmentation” picture (e.g., Hennebelle & Chabrier 2008; Hopkins 2012) whereby the properties of interstellar turbulence lead to the Salpeter power law and gravity sets the characteristic mass scale (Jeans mass). We discuss modifications to this picture based on extensive submillimeter continuum imaging observations of nearby molecular clouds with the Herschel Space Observatory which emphasize the importance of filamentary geometry (André et al. 2010; Könyves et al. 2015). The Herschel results point to the key role of the quasi-universal filamentary structure pervading the cold interstellar medium and support a scenario in which star formation occurs in two main steps (cf. André et al. 2014): first, the dissipation of kinetic energy in large-scale turbulent MHD flows generates ~ 0.1 pc-wide filaments (Arzoumanian et al. 2011) in the cold ISM; second, the densest filaments grow and fragment into prestellar cores (and ultimately protostars) by gravitational instability above a critical threshold ~ 16 M⊙/pc in mass per unit length or ~ 160 M⊙/pc2 in gas surface density (AV ∼ 8). In our observationally-driven scenario, the dense cores making up the peak of the prestellar core mass function (CMF) - likely responsible for the peak of the IMF - result from gravitational fragmentation of filaments near the critical threshold for global gravitational instability. The power-law tail of the CMF/IMF arises from the growth of the Kolmogorov-like power spectrum of initial density fluctuations [P(k) ∝ k−1.6±0.3] measured along Herschel filaments (Roy et al. 2015), in agreement with the model by Inutsuka (2001), and from the power-law distribution of line masses observed for supercritical filaments.


2014 ◽  
Vol 10 (S311) ◽  
pp. 49-52
Author(s):  
Richard M. McDermid

AbstractIn this contributed talk I present recent results on the connection between stellar population properties and the normalisation of the stellar initial mass function (IMF) measured using stellar dynamics, based on a large sample of 260 early-type galaxies observed as part of the ATLAS3D project. This measure of the IMF normalisation is found to vary non-uniformly with age- and metallicity-sensitive absorption line strengths. Applying single stellar population models, there are weak but measurable trends of the IMF with age and abundance ratio. Accounting for the dependence of stellar population parameters on velocity dispersion effectively removes these trends, but subsequently introduces a trend with metallicity, such that ‘heavy’ IMFs favour lower metallicities. The correlations are weaker than those found from previous studies directly detecting low-mass stars, suggesting some degree of tension between the different approaches of measuring the IMF. Resolving these discrepancies will be the focus of future work.


2015 ◽  
Vol 450 (4) ◽  
pp. 4137-4149 ◽  
Author(s):  
Dávid Guszejnov ◽  
Philip F. Hopkins

1989 ◽  
Vol 120 ◽  
pp. 44-55
Author(s):  
Richard B. Larson

A central problem in the theory of star formation is to understand the spectrum of masses, or Initial Mass Function, with which stars are formed. The fundamental role of the IMF in galactic evolution has been described by Tinsley (1980), and an extensive review of evidence concerning the IMF and its possible variability has been presented by Scalo (1986). Although the IMF derived from the observations is subject to many uncertainties, two basic features seem reasonably well established. One is that the typical stellar mass, defined such that equal amounts of matter condense into stars above and below this mass, is within a factor of 3 of one solar mass. A theory of star formation should therefore be able to explain why most stars are formed with masses of order one solar mass. The second apparently universal feature is that the IMF for relatively massive stars can be approximated by a power law with a slope not greatly different from that originally proposed by Salpeter (1955). Thus we also need to understand why the IMF always has a similar power-law tail toward higher masses.


Sign in / Sign up

Export Citation Format

Share Document