scholarly journals Detailed study of the microwave emission of the supernova remnant 3C 396

2016 ◽  
Vol 459 (4) ◽  
pp. 4224-4232 ◽  
Author(s):  
A. Cruciani ◽  
E. S. Battistelli ◽  
E. Carretti ◽  
P. de Bernardis ◽  
R. Genova-Santos ◽  
...  
2016 ◽  
Vol 136 (5) ◽  
pp. 227-234
Author(s):  
Rikuya Hanawa ◽  
Kuniaki Shibata ◽  
Kenji Saegusa ◽  
Tadashi Takano

2012 ◽  
Vol 3 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Valery M. Shulga ◽  
S. Y. Zubrin ◽  
V. V. Myshenko

2020 ◽  
Vol 500 (2) ◽  
pp. 2336-2358
Author(s):  
Miranda Yew ◽  
Miroslav D Filipović ◽  
Milorad Stupar ◽  
Sean D Points ◽  
Manami Sasaki ◽  
...  

ABSTRACT We present a new optical sample of three Supernova Remnants (SNRs) and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud (LMC). These objects were originally selected using deep H α, [S ii], and [O iii] narrow-band imaging. Most of the newly found objects are located in less dense regions, near or around the edges of the LMC’s main body. Together with previously suggested MCSNR J0541–6659, we confirm the SNR nature for two additional new objects: MCSNR J0522–6740 and MCSNR J0542–7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [S ii]/H α emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509–6402 to be a special example of the remnant of a possible type Ia Supernova (SN) which is situated some 2° (∼1.75 kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of ∼2. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very rarefied environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.


Author(s):  
Simon Casassus ◽  
Matías Vidal ◽  
Carla Arce-Tord ◽  
Clive Dickinson ◽  
Glenn J White ◽  
...  

Abstract Cm-wavelength radio continuum emission in excess of free-free, synchrotron and Rayleigh-Jeans dust emission (excess microwave emission, EME), and often called ‘anomalous microwave emission’, is bright in molecular cloud regions exposed to UV radiation, i.e. in photo-dissociation regions (PDRs). The EME correlates with IR dust emission on degree angular scales. Resolved observations of well-studied PDRs are needed to compare the spectral variations of the cm-continuum with tracers of physical conditions and of the dust grain population. The EME is particularly bright in the regions of the ρ Ophiuchi molecular cloud (ρ Oph) that surround the earliest type star in the complex, HD 147889, where the peak signal stems from the filament known as the ρ Oph-W PDR. Here we report on ATCA observations of ρ Oph-W that resolve the width of the filament. We recover extended emission using a variant of non-parametric image synthesis performed in the sky plane. The multi-frequency 17 GHz to 39 GHz mosaics reveal spectral variations in the cm-wavelength continuum. At ∼30 arcsec resolutions, the 17-20 GHz intensities follow tightly the mid-IR, Icm∝I(8 μm), despite the breakdown of this correlation on larger scales. However, while the 33-39 GHz filament is parallel to IRAC 8 μm, it is offset by 15–20 arcsec towards the UV source. Such morphological differences in frequency reflect spectral variations, which we quantify spectroscopically as a sharp and steepening high-frequency cutoff, interpreted in terms of the spinning dust emission mechanism as a minimum grain size acutoff ∼ 6 ± 1 Å that increases deeper into the PDR.


Sign in / Sign up

Export Citation Format

Share Document