scholarly journals The dependence of galaxy clustering on stellar mass, star-formation rate and redshift at z = 0.8–2.2, with HiZELS

2018 ◽  
Vol 475 (3) ◽  
pp. 3730-3745 ◽  
Author(s):  
R K Cochrane ◽  
P N Best ◽  
D Sobral ◽  
I Smail ◽  
J E Geach ◽  
...  
2017 ◽  
Vol 838 (2) ◽  
pp. 87 ◽  
Author(s):  
Alison L. Coil ◽  
Alexander J. Mendez ◽  
Daniel J. Eisenstein ◽  
John Moustakas

Author(s):  
Haruka Kusakabe ◽  
Kazuhiro Shimasaku ◽  
Masami Ouchi ◽  
Kimihiko Nakajima ◽  
Ryosuke Goto ◽  
...  

2015 ◽  
Vol 806 (2) ◽  
pp. 189 ◽  
Author(s):  
Jae-Woo Kim ◽  
Myungshin Im ◽  
Seong-Kook Lee ◽  
Alastair C. Edge ◽  
David A. Wake ◽  
...  

2010 ◽  
Vol 6 (S270) ◽  
pp. 503-506
Author(s):  
Pedro Colín ◽  
Vladimir Avila-Reese ◽  
Octavio Valenzuela

AbstractCosmological Adaptive Mesh Refinement simulations are used to study the specific star formation rate (sSFR=SSF/Ms) history and the stellar mass fraction, fs=Ms/MT, of small galaxies, total masses MT between few × 1010 M⊙ to few ×1011 M⊙. Our results are compared with recent observational inferences that show the so-called “downsizing in sSFR” phenomenon: the less massive the galaxy, the higher on average is its sSFR, a trend seen at least since z ~ 1. The simulations are not able to reproduce this phenomenon, in particular the high inferred values of sSFR, as well as the low values of fs constrained from observations. The effects of resolution and sub-grid physics on the SFR and fs of galaxies are discussed.


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


2020 ◽  
Vol 492 (2) ◽  
pp. 2835-2846 ◽  
Author(s):  
Sultan Hassan ◽  
Kristian Finlator ◽  
Romeel Davé ◽  
Christopher W Churchill ◽  
J Xavier Prochaska

ABSTRACT We examine the properties of damped Lyman-α absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: simba and technicolor dawn. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multifrequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly α forest mean transmission at z > 5. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at z ≥ 3, and both reproduce the observed neutral hydrogen cosmological mass density, $\Omega _{\rm H\, \small{I}}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows’ feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows underproduces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an H2-regulated star formation recipe includes a tail extending to [M/H] ≪ −3, lower than any DLA observed to date, owing to curtailed star formation in low-metallicity galaxies. Our results show that DLA observations play an important role in constraining key physical ingredients in galaxy formation models, complementing traditional ensemble statistics such as the stellar mass and star formation rate functions.


2020 ◽  
Vol 495 (3) ◽  
pp. 2827-2843 ◽  
Author(s):  
Florencia Collacchioni ◽  
Claudia D P Lagos ◽  
Peter D Mitchell ◽  
Joop Schaye ◽  
Emily Wisnioski ◽  
...  

ABSTRACT We study the effect of the gas accretion rate ($\dot{M}_{\rm accr}$) on the radial gas metallicity profile (RMP) of galaxies using the eagle cosmological hydrodynamic simulations, focusing on central galaxies of stellar mass M⋆ ≳ 109 M⊙ at z ≤ 1. We find clear relations between $\dot{M}_{\rm accr}$ and the slope of the RMP (measured within an effective radius), where higher $\dot{M}_{\rm accr}$ are associated with more negative slopes. The slope of the RMPs depends more strongly on $\dot{M}_{\rm accr}$ than on stellar mass, star formation rate (SFR), or gas fraction, suggesting $\dot{M}_{\rm accr}$ to be a more fundamental driver of the RMP slope of galaxies. We find that eliminating the dependence on stellar mass is essential for pinning down the properties that shape the slope of the RMP. Although $\dot{M}_{\rm accr}$ is the main property modulating the slope of the RMP, we find that it causes other correlations that are more easily testable observationally: At fixed stellar mass, galaxies with more negative RMP slopes tend to have higher gas fractions and SFRs, while galaxies with lower gas fractions and SFRs tend to have flatter metallicity profiles within an effective radius.


Sign in / Sign up

Export Citation Format

Share Document