scholarly journals Maturing satellite kinematics into a competitive probe of the galaxy–halo connection

2018 ◽  
Vol 482 (4) ◽  
pp. 4824-4845 ◽  
Author(s):  
Johannes U Lange ◽  
Frank C van den Bosch ◽  
Andrew R Zentner ◽  
Kuan Wang ◽  
Antonio S Villarreal
Keyword(s):  
2019 ◽  
Vol 871 (2) ◽  
pp. L21 ◽  
Author(s):  
Robert Feldmann ◽  
Claude-André Faucher-Giguère ◽  
Dušan Kereš
Keyword(s):  
Low Mass ◽  

2019 ◽  
Vol 488 (1) ◽  
pp. 782-802 ◽  
Author(s):  
N Chandrachani Devi ◽  
Aldo Rodríguez-Puebla ◽  
O Valenzuela ◽  
Vladimir Avila-Reese ◽  
César Hernández-Aguayo ◽  
...  

Abstract We investigate the dependence of the galaxy–halo connection and galaxy density field in modified gravity models using the N-body simulations for f(R) and nDGP models at z = 0. Because of the screening mechanisms employed by these models, chameleon and Vainshtein, haloes are clustered differently in the non-linear regime of structure formation. We quantify their deviations in the galaxy density field from the standard Λ cold dark matter (ΛCDM) model under different environments. We populate galaxies in haloes via the (sub)halo abundance matching. Our main results are as follows: (1) The galaxy–halo connection strongly depends on the gravity model; a maximum variation of ${\sim }40{{\ \rm per\ cent}}$ is observed between halo occupational distribution (HOD) parameters; (2) f(R) gravity models predict an excess of galaxies in low-density environments of ${\sim }10{{\ \rm per\ cent}}$ but predict a deficit of ${\sim }10{{\ \rm per\ cent}}$ at high-density environments for |fR0| = 10−4 and 10−6 while |fR0| = 10−5 predicts more high-density structures; nDGP models are consistent with ΛCDM; (3) different gravity models predict different dependences of the galaxy luminosity function (GLF) with the environment, especially in void-like regions we find differences around ${\sim }10{{\ \rm per\ cent}}$ for the f(R) models while nDPG models remain closer to ΛCDM for low-luminosity galaxies but there is a deficit of ${\sim }11{{\ \rm per\ cent}}$ for high-luminosity galaxies in all environments. We conclude that the dependence of the GLF with environment might provide a test to distinguish between gravity models and their screening mechanisms from the ΛCDM. We provide HOD parameters for the gravity models analysed in this paper.


2020 ◽  
Vol 495 (3) ◽  
pp. 3002-3013 ◽  
Author(s):  
Alexander Knebe ◽  
Matías Gámez-Marín ◽  
Frazer R Pearce ◽  
Weiguang Cui ◽  
Kai Hoffmann ◽  
...  

ABSTRACT Using 324 numerically modelled galaxy clusters, we investigate the radial and galaxy–halo alignment of dark matter subhaloes and satellite galaxies orbiting within and around them. We find that radial alignment depends on distance to the centre of the galaxy cluster but appears independent of the dynamical state of the central host cluster. Furthermore, we cannot find a relation between radial alignment of the halo or galaxy shape with its own mass. We report that backsplash galaxies, i.e. objects that have already passed through the cluster radius but are now located in the outskirts, show a stronger radial alignment than infalling objects. We further find that there exists a population of well radially aligned objects passing very close to the central cluster’s centre that were found to be on highly radial orbit.


2015 ◽  
Vol 454 (2) ◽  
pp. 1432-1452 ◽  
Author(s):  
Tim Schrabback ◽  
Stefan Hilbert ◽  
Henk Hoekstra ◽  
Patrick Simon ◽  
Edo van Uitert ◽  
...  
Keyword(s):  

2016 ◽  
Vol 834 (1) ◽  
pp. 37 ◽  
Author(s):  
Benjamin V. Lehmann ◽  
Yao-Yuan Mao ◽  
Matthew R. Becker ◽  
Samuel W. Skillman ◽  
Risa H. Wechsler

2011 ◽  
Vol 20 (10) ◽  
pp. 1771-1777
Author(s):  
HOUJUN MO

Given that dark matter is gravitationally dominant in the universe, and that galaxy formation is closely related to dark matter halos, a key first step in understanding galaxy formation and evolution in the CDM paradigm is to quantify the galaxy-halo connection for galaxies of different properties. Here I will present results about the halo/galaxy connection obtained from two different methods. One is based on the conditional luminosity function, which describes the occupation of galaxies in halos of different masses, and the other is based on galaxy systems properly selected to represent dark halos.


2018 ◽  
Vol 853 (1) ◽  
pp. 69 ◽  
Author(s):  
William I. Cowley ◽  
Karina I. Caputi ◽  
Smaran Deshmukh ◽  
Matthew L. N. Ashby ◽  
Giovanni G. Fazio ◽  
...  
Keyword(s):  

1994 ◽  
Vol 431 ◽  
pp. L23 ◽  
Author(s):  
Joshua Frieman ◽  
Roman Scoccimarro
Keyword(s):  

2016 ◽  
Vol 12 (S323) ◽  
pp. 288-292
Author(s):  
Alessia Longobardi ◽  
Magda Arnaboldi ◽  
Ortwin Gerhard

AbstractCosmological simulations allow us to study in detail the evolution of galaxy halos in cluster environments, but the extremely low surface brightness of such components makes it difficult to gather observational constraints. Planetary nebulas (PNs) offer a unique tool to investigate these environments owing to their strong [OIII] emission line. We study the light and kinematics of the Virgo cluster and its central galaxy, M87, prime targets to address the topic of galaxy formation and evolution in dense environments. We make use of a deep and extended PN sample (~300 objects) that extends out to 150 kpc in radius from M87’s centre. We show that at all distance the galaxy halo overlaps with the Virgo intracluster light (ICL). Halo and ICL are dynamically distinct components with different parent stellar populations, consistent with the halo of M87 being redder and more metal rich than the ICL. The synergy between PN kinematic information and deep V/B-band photometry made it possible to unravel an ongoing accretion process in the outskirt of M87. This accretion event represents a non-negligible perturbation of the halo light, showing that this galaxy is still growing by accretion of smaller systems.


Sign in / Sign up

Export Citation Format

Share Document