galaxy halos
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 924 (1) ◽  
pp. 12
Author(s):  
Farhanul Hasan ◽  
Christopher W. Churchill ◽  
Bryson Stemock ◽  
Nikole M. Nielsen ◽  
Glenn G. Kacprzak ◽  
...  

Abstract We use the observed cumulative statistics of C iv absorbers and dark matter halos to infer the distribution of C iv-absorbing gas relative to galaxies at redshifts 0 ≤ z ≤ 5. We compare the cosmic incidence dN/dX of C iv absorber populations and galaxy halos, finding that massive L ≥ L ⋆ halos alone cannot account for all the observed W r ≥ 0.05 Å absorbers. However, the dN/dX of lower-mass halos exceeds that of W r ≥ 0.05 Å absorbers. We also estimate the characteristic gas radius of absorbing structures required for the observed C iv dN/dX, assuming each absorber is associated with a single galaxy halo. The W r ≥ 0.3 Å and W r ≥ 0.6 Å C iv gas radii are ∼30%–70% (∼20%–40%) of the virial radius of L ⋆ (0.1L ⋆) galaxies, and the W r ≥ 0.05 Å gas radius is ∼100%–150% (∼60%–100%) of the virial radius of L ⋆ (0.1L ⋆) galaxies. For stronger absorbers, the gas radius relative to the virial radius rises across Cosmic Noon and falls afterwards, while for weaker absorbers, the relative gas radius declines across Cosmic Noon and then dramatically rises at z < 1. A strong luminosity-dependence of the gas radius implies highly extended C iv envelopes around massive galaxies before Cosmic Noon, while a luminosity-independent gas radius implies highly extended envelopes around dwarf galaxies after Cosmic Noon. From available absorber-galaxy and C iv evolution data, we favor a scenario in which low-mass galaxies enrich the volume around massive galaxies at early epochs and propose that the outer halo gas (>0.5 R v ) was produced primarily in ancient satellite dwarf galaxy outflows, while the inner halo gas (<0.5 R v ) originated from the central galaxy and persists as recycled accreting gas.


2021 ◽  
Author(s):  
Abdul W. Khanday ◽  
Sudhaker Upadhyay ◽  
Prince A. Ganai

Abstract We study the thermodynamics of galaxy clusters in a modified Newtonian potential motivated by a general solution to Newton’s “sphere-point” equivalence theorem. We obtain the N particle partition function by evaluating the configurational integral while accounting for the extended nature of galaxies (via the inclusion of the softening parameter ε into the potential energy function). This softening parameter takes care of the galaxy-halos whose effect on structuring the shape of the galactic disc has been found recently. The spatial distribution of the particles (galaxies) is also studied in this framework. A comparison of the new clustering parameter b + to the original clustering parameters is presented in order to visualize the effect of the modified gravity. We also discuss the possibility of system symmetry breaking via the behavior of the specific heat as a function of temperature.


2021 ◽  
Vol 2021 (11) ◽  
pp. 055
Author(s):  
Iskander G. Abdullin ◽  
Vladimir A. Popov

Abstract We consider galaxy halos formed by dark matter bosons with mass in the range of about a few tens or hundreds eV. A major part of the particles is in a noncondensed state and described under the Thomas-Fermi approach. Derived equations are solved numerically to find the halo density profile. The noncondensed state is supported in the entire halo except compact gravitationally bounded Bose-Einstein condensates. Although the size of these compact objects, also known as Bose stars, depends on interactions between the particles, its upper limit is only about 100 astronomical units. The Bose stars collect the condensed bosons providing a density cusp avoidance in the halo as well as a natural mechanism to prevent overproduction of small halos. Clusters of the Bose stars can also contribute to the halo density profile. The model is analyzed by confronting its predictions with observations of galaxy rotation curves. We employ 22 low surface brightness galaxies and obtain that the model is consistent with the observational data when the particle mass is in the range above about 50 eV and the best fit corresponds to the mass m = 86 eV. This mass is appropriate for relic dark matter bosons, which decouple just after QCD phase transition.


Author(s):  
Haeun Chung ◽  
Carlos J. Vargas ◽  
Erika T. Hamden ◽  
Thomas McMahon ◽  
Kerry L. Gonzales ◽  
...  
Keyword(s):  
Hot Gas ◽  

2021 ◽  
Vol 916 (1) ◽  
pp. 7
Author(s):  
Haeun Chung ◽  
Carlos J. Vargas ◽  
Erika Hamden
Keyword(s):  

2021 ◽  
Vol 911 (2) ◽  
pp. 102
Author(s):  
Stella Koch Ocker ◽  
James M. Cordes ◽  
Shami Chatterjee
Keyword(s):  

Author(s):  
Andrea Afruni ◽  
Filippo Fraternali ◽  
Gabriele Pezzulli

Abstract The characterization of the large amount of gas residing in the galaxy halos, the so called circumgalactic medium (CGM), is crucial to understand galaxy evolution across cosmic time. We focus here on the the cool (T ∼ 104 K) phase of this medium around star-forming galaxies in the local universe, whose properties and dynamics are poorly understood. We developed semi-analytical parametric models to describe the cool CGM as an outflow of gas clouds from the central galaxy, as a result of supernova explosions in the disc (galactic wind). The cloud motion is driven by the galaxy gravitational pull and by the interactions with the hot (T ∼ 106 K) coronal gas. Through a bayesian analysis, we compare the predictions of our models with the data of the COS-Halos and COS-GASS surveys, which provide accurate kinematic information of the cool CGM around more than 40 low-redshift star-forming galaxies, probing distances up to the galaxy virial radii. Our findings clearly show that a supernova-driven outflow model is not suitable to describe the dynamics of the cool circumgalactic gas. Indeed, to reproduce the data, we need extreme scenarios, with initial outflow velocities and mass loading factors that would lead to unphysically high energy coupling from the supernovae to the gas and with supernova efficiencies largely exceeding unity. This strongly suggests that, since the outflows cannot reproduce most of the cool gas absorbers, the latter are likely the result of cosmological inflow in the outer galaxy halos, in analogy to what we have previously found for early-type galaxies.


2020 ◽  
Vol 897 (1) ◽  
pp. 102 ◽  
Author(s):  
Zhu Chen ◽  
S. M. Faber ◽  
David C. Koo ◽  
Rachel S. Somerville ◽  
Joel R. Primack ◽  
...  
Keyword(s):  

2020 ◽  
Vol 183 ◽  
pp. 104504 ◽  
Author(s):  
Hiroyuki Hirashita ◽  
Chih-Yu Lin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document