scholarly journals gamma-Glutamyl transferase (GGT) deficiency in the GGTenu1 mouse results from a single point mutation that leads to a stop codon in the first coding exon of GGT mRNA

Mutagenesis ◽  
1999 ◽  
Vol 14 (1) ◽  
pp. 31-36 ◽  
Author(s):  
J. C. Jean
Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 751-760 ◽  
Author(s):  
Yu-Kuo Tsai ◽  
Hung-Wen Chen ◽  
Ta-Chun Lo ◽  
Thy-Hou Lin

Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac+ clones could be obtained. A gene cluster (lacTEGF–galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac−) and its Lac+ revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac–gal gene clusters was different. The protein sequence identity between the lac–gal gene cluster and those reported previously for some L. casei (Lac+) strains was high; namely, 96–100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac+ revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac+ revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac− to Lac+ for L. casei ATCC 27139.


2021 ◽  
Author(s):  
Jasmine N. Tutol ◽  
Jessica Lee ◽  
Hsichuan Chi ◽  
Farah N. Faizuddin ◽  
Sameera S. Abeyrathna ◽  
...  

By utilizing laboratory-guided evolution, we have converted the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2007 ◽  
Vol 44 (6) ◽  
pp. 1417-1428 ◽  
Author(s):  
Veronica V. Volgina ◽  
Tianhe Sun ◽  
Grazyna Bozek ◽  
Terence E. Martin ◽  
Ursula Storb

1998 ◽  
Vol 252 (1) ◽  
pp. 184-189 ◽  
Author(s):  
Marzia Nuccetelli ◽  
Anna P. Mazzetti ◽  
Jamie Rossjohn ◽  
Michael W. Parker ◽  
Philip Board ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document