pheromone receptor
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 27)

H-INDEX

45
(FIVE YEARS 4)

IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Wang ◽  
Yuanyuan Wang ◽  
Lianfu Chen ◽  
Hongbo Wang ◽  
Lin Guo ◽  
...  

AbstractThe mating compatibility in fungi is generally governed by genes located within a single or two unlinked mating type (MAT) loci. Hypsizygus marmoreus is an edible mushroom in the order Agaricales with a tetrapolar system, which contains two unlinked MAT loci-homeodomain (HD) transcription factor genes and pheromone/pheromone receptor genes (P/R). In this study, we analyzed the genetic structure and diversity of MAT loci in tetrapolar system of H. marmoreus through sequencing of 54 heterokaryon and 8 homokaryon strains. Although within the HD loci, the gene order was conserved, the gene contents were variable, and the HD loci haplotypes were further classified into four types. By analyzing the structure, phylogeny, and the HD transmissibility based on the progeny of these four HD mating-type loci types, we found that they were heritable and tightly linked at the HD loci. The P/R loci genes were found to comprise three pheromone receptors, three pheromones, and two pheromone receptor-like genes. Intra- and inter-specific phylogenetic analyses of pheromone receptors revealed that the STE3 genes were divided into three groups, and we thus theorize that they diverged before speciation. Comparative analysis of the MAT regions among 73 Basidiomycete species indicated that the diversity of HD and P/R loci in Agaricales and Boletales may contribute to mating compatibility. The number of HD genes were not correlated with the tetrapolar or bipolar systems. In H. marmoreus, the expression levels of these genes at HD and P/R loci of compatible strains were found higher than in those of homonuclear/homokaryotic strains, indicating that these mating genes acted as switches for mating processes. Further collinear analysis of HD loci in interspecific species found that HD loci contains conserved recombination hotspots showing major rearrangements in Coprinopsis cinerea and Schizophyllum commune, suggesting different mechanisms for evolution of physically linked MAT loci in these groups. It seems likely that gene rearrangements are common in Agaricales fungi around HD loci. Together, our study provides insights into the genomic basis of mating compatibility in H. marmoreus.


Author(s):  
Jothi Kumar Yuvaraj ◽  
Melissa D. Jordan ◽  
Dan-Dan Zhang ◽  
Martin N. Andersson ◽  
Christer Löfstedt ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1845
Author(s):  
Lei Zhong ◽  
Weimin Wang ◽  
Xiaojuan Cao

The release and sensation of sex pheromone play a role in the reproductive success of vertebrates including fish. Previous studies have shown that the weather loach Misgurnus anguillicaudatus perceives sex pheromones by olfaction to stimulate courtship behavior. It was speculated that weather loaches use smell to recognize intraspecific mates. However, the identification of loach pheromone receptor has not been reported. By comparative transcriptomic approach, we found that the olfactory receptor gene or114-1 was male-biasedly expressed in the olfactory epithelium of M. anguillicaudatus, M. bipartitus and the closely related species Paramisgurnus dabryanus. This sex-biased expression pattern implicated that or114-1 presumably encoded a sex pheromone receptor in loaches. M. bipartitus and P. dabryanus, like zebrafish, possess one or114-1 only. However, in M. anguillicaudatus, or114-1 has two members: Ma_or114-1a and Ma_or114-1b. Ma_or114-1a, not Ma_or114-1b, showed sex-differential expression in olfactory epithelium. Ma_or114-1b has base insertions that delayed the stop codon, causing the protein sequence length to be extended by 8 amino acids. Ma_or114-1a was subject to positive selection resulting in adaptive amino acid substitutions, which indicated that its ligand binding specificity has probably changed. This adaptive evolution might be driven by the combined effects of sexual selection and reinforcement of premating isolation between the sympatric loach species.


Author(s):  
Marco Alexandre Guerreiro ◽  
Steven Ahrendt ◽  
Jasmyn Pangilinan ◽  
Cindy Chen ◽  
Mi Yan ◽  
...  

Abstract The Tremellomycetes are a species-rich group within the basidiomycete fungi; however, most analyses of this group to date have focused on pathogenic Cryptococcus species within the order Tremellales. Recent genome-assisted studies of other Tremellomycetes have identified interesting features with respect to biotechnological applications as well as the evolution of genes involved in mating and sexual development. Here, we report genome sequences of two strains of Filobasidium floriforme, a species from the order Filobasidiales, which branches basally to the Tremellales, Trichosporonales and Holtermanniales. The assembled genomes of strains CBS6241 and CBS6242 are 27.4 Mb and 26.4 Mb in size, respectively, with 8314 and 7695 predicted protein-coding genes. Overall sequence identity at nucleic acid level between the strains is 97%. Among the predicted genes are pheromone precursor and pheromone receptor genes as well as two genes encoding homedomain (HD) transcription factors, which are predicted to be part of the mating type (MAT) locus. Sequence analysis indicates that CBS6241 and CBS6242 carry different alleles for both the pheromone/receptor genes as well as the HD transcription factors. Orthology inference identified 1482 orthogroups exclusively found in F. floriforme, some of which were involved in carbohydrate transport and metabolism. Subsequent CAZyme repertoire characterization identified 267 and 247 enzymes for CBS6241 and CBS6242, respectively, the second highest number of CAZymes among the analyzed Tremellomycete species. Additionally, F. floriforme contains five CAZymes absent in other species and several plant-cell-wall degrading CAZymes with the highest copy number in Tremellomycota, indicating the biotechnological potential of this species.


2021 ◽  
Author(s):  
Nicolas Krink ◽  
Anne Christina Loechner ◽  
Alexander Anders ◽  
Joerg Kahnt ◽  
Georg Hochberg ◽  
...  

The key next step in synthetic biology is to extend cellular network engineering to the multicellular level by utilizing cell-cell communication for information processing. To facilitate the implementation of multicellular networks in the most commonly used eukaryotic chassis, Saccharomyces cerevisiae, we developed the yeast communication toolkit (YCTK). This toolkit is based on the fungal mating pathway and contains five pheromone-inducible promoters (response parts), eleven pheromones (α-factors; sender parts), eleven pheromone receptors (Ste2; receiver parts), as well as five Bar1 proteases (suppressor parts). All YCTK parts were thoroughly characterized and are compatible with the commonly used yeast Golden Gate cloning standard. We demonstrated the application of the YCTK by implementing several different logic gate-like population networks. Furthermore, we used this toolkit to investigate the pheromone-receptor promiscuity patterns among different yeast species. This toolkit extends currently available resources for construction of complex multicellular eukaryotic networks with varying degrees of promiscuity and attenuation.


Genetics ◽  
2021 ◽  
Author(s):  
Taisuke Seike ◽  
Natsue Sakata ◽  
Chikashi Shimoda ◽  
Hironori Niki ◽  
Chikara Furusawa

Abstract Most sexually reproducing organisms have the ability to recognize individuals of the same species. In ascomycete fungi including yeasts, mating between cells of opposite mating type depends on the molecular recognition of two peptidyl mating pheromones by their corresponding G-protein coupled receptors (GPCRs). Although such pheromone/receptor systems are likely to function in both mate choice and prezygotic isolation, very few studies have focused on the stringency of pheromone receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). Here we investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor, in fission yeast. First, we switched GPCRs between S. pombe and the closely related species Schizosaccharomyces octosporus, which showed that SoMam2 (Mam2 of S. octosporus) is partially functional in S. pombe, whereas SoMap3 (Map3 of S. octosporus) is not interchangeable. Next, we swapped individual domains of Mam2 and Map3 with the respective domains in SoMam2 and SoMap3, which revealed differences between the receptors both in the intracellular regions that regulate the downstream signaling of pheromones and in the activation by the pheromone. In particular, we demonstrated that two amino acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors. Thus, the differences in these two GPCRs might reflect the significantly distinct stringency/flexibility of their respective pheromone/receptor systems; nevertheless, species-specific pheromone recognition remains incomplete.


Sign in / Sign up

Export Citation Format

Share Document