scholarly journals In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin

1996 ◽  
Vol 24 (15) ◽  
pp. 2924-2929 ◽  
Author(s):  
V. Nguyen
1992 ◽  
Vol 12 (4) ◽  
pp. 1639-1651 ◽  
Author(s):  
S C Batson ◽  
R Sundseth ◽  
C V Heath ◽  
M Samuels ◽  
U Hansen

We have studied the initiation of transcription in vitro by RNA polymerase II on simian virus 40 (SV40) minichromosomal templates isolated from infected cells. The efficiency and pattern of transcription from the chromatin templates were compared with those from viral DNA templates by using two in vitro transcription systems, either HeLa whole-cell extract or basal transcription factors, RNA polymerase II, and one of two SV40 promoter-binding transcription factors, LSF and Sp1. Dramatic increases in numbers of transcripts upon addition of transcription extract and different patterns of usage of the multiple SV40 initiation sites upon addition of Sp1 versus LSF strongly suggested that transcripts were being initiated from the minichromosomal templates in vitro. That the majority of transcripts from the minichromosomes were due to initiation de novo was demonstrated by the efficient transcription observed in the presence of alpha-amanitin, which inhibited minichromosome-associated RNA polymerase II, and an alpha-amanitin-resistant RNA polymerase II, which initiated transcription in vitro. The pattern of transcription from the SV40 late and early promoters on the minichromosomal templates was similar to the in vivo pattern of transcription during the late stages of viral infection and was distinct from the pattern of transcription generated from viral DNA in vitro. In particular, the late promoter of the minichromosomal templates was transcribed with high efficiency, similar to viral DNA templates, while the early-early promoter of the minichromosomal templates was inhibited 10- to 15-fold. Finally, the number of minichromosomes competent to initiate transcription in vitro exceeded the amount actively being transcribed in vivo.


1990 ◽  
Vol 10 (5) ◽  
pp. 1915-1920 ◽  
Author(s):  
P A Kolodziej ◽  
N Woychik ◽  
S M Liao ◽  
R A Young

RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.


1990 ◽  
Vol 10 (5) ◽  
pp. 1915-1920 ◽  
Author(s):  
P A Kolodziej ◽  
N Woychik ◽  
S M Liao ◽  
R A Young

RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.


1992 ◽  
Vol 12 (4) ◽  
pp. 1639-1651
Author(s):  
S C Batson ◽  
R Sundseth ◽  
C V Heath ◽  
M Samuels ◽  
U Hansen

We have studied the initiation of transcription in vitro by RNA polymerase II on simian virus 40 (SV40) minichromosomal templates isolated from infected cells. The efficiency and pattern of transcription from the chromatin templates were compared with those from viral DNA templates by using two in vitro transcription systems, either HeLa whole-cell extract or basal transcription factors, RNA polymerase II, and one of two SV40 promoter-binding transcription factors, LSF and Sp1. Dramatic increases in numbers of transcripts upon addition of transcription extract and different patterns of usage of the multiple SV40 initiation sites upon addition of Sp1 versus LSF strongly suggested that transcripts were being initiated from the minichromosomal templates in vitro. That the majority of transcripts from the minichromosomes were due to initiation de novo was demonstrated by the efficient transcription observed in the presence of alpha-amanitin, which inhibited minichromosome-associated RNA polymerase II, and an alpha-amanitin-resistant RNA polymerase II, which initiated transcription in vitro. The pattern of transcription from the SV40 late and early promoters on the minichromosomal templates was similar to the in vivo pattern of transcription during the late stages of viral infection and was distinct from the pattern of transcription generated from viral DNA in vitro. In particular, the late promoter of the minichromosomal templates was transcribed with high efficiency, similar to viral DNA templates, while the early-early promoter of the minichromosomal templates was inhibited 10- to 15-fold. Finally, the number of minichromosomes competent to initiate transcription in vitro exceeded the amount actively being transcribed in vivo.


1992 ◽  
Vol 3 (10) ◽  
pp. 1085-1094 ◽  
Author(s):  
J Mirkovitch ◽  
J E Darnell

The assembly of an RNA polymerase II initiation complex at a promoter is associated with the melting of the DNA template to allow the polymerase to read the DNA sequence and synthesize the corresponding RNA. Using the specific single-stranded modifying reagent KMnO4 and a new genomic sequencing technique, we have explored the melted regions of specific genes in genomic DNA of whole cells or of isolated nuclei. We have demonstrated for the first time in vivo the melting in the promoter proximal transcribed region that is associated with the presence of RNA polymerase II complexes. An interferon-inducible gene, ISG-54, exhibited KMnO4 sensitivity over approximately 300 nucleotides downstream of the RNA initiation site in interferon-treated cells when the gene was actively transcribed but not in untreated cells where the gene was not transcribed. The extent of KMnO4 modification was proportional to transcription levels. The KMnO4 sensitivity was retained when nuclei were isolated from induced cells but was lost if the engaged polymerases were further allowed to elongate the nascent RNA chains ("run-on"). The sensitivity to KMnO4 in isolated nuclei was retained if the run-on incubation was performed in the presence of alpha-amanitin, which blocks progress of engaged polymerases. A similar analysis identified an open sequence of only approximately 30 bases just downstream of the start site of the transthyretin (TTR) gene in nuclei isolated from mouse liver, a tissue where TTR is actively transcribed. This abrupt boundary of KMnO4 sensitivity, which was removed completely by allowing engaged polymerases to elongate RNA chains, suggests that most polymerases transcribing this gene paused at about position +20. The possibility of mapping at the nucleotide level the position of actively transcribing RNA polymerases in whole cells or isolated nuclei opens new prospects in the study of transcription initiation and elongation.


Sign in / Sign up

Export Citation Format

Share Document