scholarly journals Mapping of RNA polymerase on mammalian genes in cells and nuclei.

1992 ◽  
Vol 3 (10) ◽  
pp. 1085-1094 ◽  
Author(s):  
J Mirkovitch ◽  
J E Darnell

The assembly of an RNA polymerase II initiation complex at a promoter is associated with the melting of the DNA template to allow the polymerase to read the DNA sequence and synthesize the corresponding RNA. Using the specific single-stranded modifying reagent KMnO4 and a new genomic sequencing technique, we have explored the melted regions of specific genes in genomic DNA of whole cells or of isolated nuclei. We have demonstrated for the first time in vivo the melting in the promoter proximal transcribed region that is associated with the presence of RNA polymerase II complexes. An interferon-inducible gene, ISG-54, exhibited KMnO4 sensitivity over approximately 300 nucleotides downstream of the RNA initiation site in interferon-treated cells when the gene was actively transcribed but not in untreated cells where the gene was not transcribed. The extent of KMnO4 modification was proportional to transcription levels. The KMnO4 sensitivity was retained when nuclei were isolated from induced cells but was lost if the engaged polymerases were further allowed to elongate the nascent RNA chains ("run-on"). The sensitivity to KMnO4 in isolated nuclei was retained if the run-on incubation was performed in the presence of alpha-amanitin, which blocks progress of engaged polymerases. A similar analysis identified an open sequence of only approximately 30 bases just downstream of the start site of the transthyretin (TTR) gene in nuclei isolated from mouse liver, a tissue where TTR is actively transcribed. This abrupt boundary of KMnO4 sensitivity, which was removed completely by allowing engaged polymerases to elongate RNA chains, suggests that most polymerases transcribing this gene paused at about position +20. The possibility of mapping at the nucleotide level the position of actively transcribing RNA polymerases in whole cells or isolated nuclei opens new prospects in the study of transcription initiation and elongation.

2007 ◽  
Vol 28 (3) ◽  
pp. 1161-1170 ◽  
Author(s):  
Zhuoyu Ni ◽  
Abbie Saunders ◽  
Nicholas J. Fuda ◽  
Jie Yao ◽  
Jose-Ramon Suarez ◽  
...  

ABSTRACT Positive transcription elongation factor b (P-TEFb) is the major metazoan RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) Ser2 kinase, and its activity is believed to promote productive elongation and coupled RNA processing. Here, we demonstrate that P-TEFb is critical for the transition of Pol II into a mature transcription elongation complex in vivo. Within 3 min following P-TEFb inhibition, most polymerases were restricted to within 150 bp of the transcription initiation site of the active Drosophila melanogaster Hsp70 gene, and live-cell imaging demonstrated that these polymerases were stably associated. Polymerases already productively elongating at the time of P-TEFb inhibition, however, proceeded with elongation in the absence of active P-TEFb and cleared from the Hsp70 gene. Strikingly, all transcription factors tested (P-TEFb, Spt5, Spt6, and TFIIS) and RNA-processing factor CstF50 exited the body of the gene with kinetics indistinguishable from that of Pol II. An analysis of the phosphorylation state of Pol II upon the inhibition of P-TEFb also revealed no detectable CTD Ser2 phosphatase activity upstream of the Hsp70 polyadenylation site. In the continued presence of P-TEFb inhibitor, Pol II levels across the gene eventually recovered.


2004 ◽  
Vol 24 (24) ◽  
pp. 10975-10985 ◽  
Author(s):  
Mohamed A. Ghazy ◽  
Seth A. Brodie ◽  
Michelle L. Ammerman ◽  
Lynn M. Ziegler ◽  
Alfred S. Ponticelli

ABSTRACT Transcription factor IIF (TFIIF) is required for transcription of protein-encoding genes by eukaryotic RNA polymerase II. In contrast to numerous studies establishing a role for higher eukaryotic TFIIF in multiple steps of the transcription cycle, relatively little has been reported regarding the functions of TFIIF in the yeast Saccharomyces cerevisiae. In this study, site-directed mutagenesis, plasmid shuffle complementation assays, and primer extension analyses were employed to probe the functional domains of the S. cerevisiae TFIIF subunits Tfg1 and Tfg2. Analyses of 35 Tfg1 alanine substitution mutants and 19 Tfg2 substitution mutants identified 5 mutants exhibiting altered properties in vivo. Primer extension analyses revealed that the conditional growth properties exhibited by the tfg1-E346A, tfg1-W350A, and tfg2-L59K mutants were associated with pronounced upstream shifts in transcription initiation in vivo. Analyses of double mutant strains demonstrated functional interactions between the Tfg1 mutations and mutations in Tfg2, TFIIB, and RNA polymerase II. Importantly, biochemical results demonstrated an altered interaction between mutant TFIIF protein and RNA polymerase II. These results provide direct evidence for the involvement of S. cerevisiae TFIIF in the mechanism of transcription start site utilization and support the view that a TFIIF-RNA polymerase II interaction is a determinant in this process.


1990 ◽  
Vol 10 (2) ◽  
pp. 653-661
Author(s):  
A L Means ◽  
P J Farnham

We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).


2004 ◽  
Vol 24 (7) ◽  
pp. 2863-2874 ◽  
Author(s):  
Thomas C. Tubon ◽  
William P. Tansey ◽  
Winship Herr

ABSTRACT The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIBZR) and a carboxy-terminal core (TFIIBCORE). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIBZR that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIBZR surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIBZR domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters—pol II recruitment—has changed in sequence specificity during eukaryotic evolution.


1992 ◽  
Vol 12 (4) ◽  
pp. 1639-1651 ◽  
Author(s):  
S C Batson ◽  
R Sundseth ◽  
C V Heath ◽  
M Samuels ◽  
U Hansen

We have studied the initiation of transcription in vitro by RNA polymerase II on simian virus 40 (SV40) minichromosomal templates isolated from infected cells. The efficiency and pattern of transcription from the chromatin templates were compared with those from viral DNA templates by using two in vitro transcription systems, either HeLa whole-cell extract or basal transcription factors, RNA polymerase II, and one of two SV40 promoter-binding transcription factors, LSF and Sp1. Dramatic increases in numbers of transcripts upon addition of transcription extract and different patterns of usage of the multiple SV40 initiation sites upon addition of Sp1 versus LSF strongly suggested that transcripts were being initiated from the minichromosomal templates in vitro. That the majority of transcripts from the minichromosomes were due to initiation de novo was demonstrated by the efficient transcription observed in the presence of alpha-amanitin, which inhibited minichromosome-associated RNA polymerase II, and an alpha-amanitin-resistant RNA polymerase II, which initiated transcription in vitro. The pattern of transcription from the SV40 late and early promoters on the minichromosomal templates was similar to the in vivo pattern of transcription during the late stages of viral infection and was distinct from the pattern of transcription generated from viral DNA in vitro. In particular, the late promoter of the minichromosomal templates was transcribed with high efficiency, similar to viral DNA templates, while the early-early promoter of the minichromosomal templates was inhibited 10- to 15-fold. Finally, the number of minichromosomes competent to initiate transcription in vitro exceeded the amount actively being transcribed in vivo.


2001 ◽  
Vol 21 (14) ◽  
pp. 4427-4440 ◽  
Author(s):  
Silviu L. Faitar ◽  
Seth A. Brodie ◽  
Alfred S. Ponticelli

ABSTRACT The general transcription factor IIB (TFIIB) is required for transcription of class II genes by RNA polymerase II. Previous studies demonstrated that mutations in the Saccharomyces cerevisiae SUA7 gene, which encodes TFIIB, can alter transcription initiation patterns in vivo. To further delineate the functional domain and residues of TFIIB involved in transcription start site utilization, a genetic selection was used to isolate S. cerevisiae TFIIB mutants exhibiting downstream shifts in transcription initiation in vivo. Both dominant and recessive mutations conferring downstream shifts were identified at multiple positions within a highly conserved homology block in the N-terminal region of the protein. The TFIIB mutations conferred downstream shifts in transcription initiation at the ADH1 and CYC1 promoters, whereas no significant shifts were observed at the HIS3 promoter. Analysis of a series of ADH1-HIS3 hybrid promoters and variant ADH1 and HIS3 promoters containing insertions, deletions, or site-directed base substitutions revealed that the feature that renders a promoter sensitive to TFIIB mutations is the sequence in the immediate vicinity of the normal start sites. We discuss these results in light of possible models for the mechanism of start site utilization by S. cerevisiae RNA polymerase II and the role played by TFIIB.


1988 ◽  
Vol 8 (8) ◽  
pp. 3114-3121
Author(s):  
J A Knezetic ◽  
G A Jacob ◽  
D S Luse

We have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, we demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that our observations are not the result of slow displacement of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.


Sign in / Sign up

Export Citation Format

Share Document