scholarly journals An element in the 5' common exon of the NCAM alternative splicing unit interacts with SR proteins and modulates 5' splice site selection

1999 ◽  
Vol 27 (12) ◽  
pp. 2529-2537 ◽  
Author(s):  
J Cote
1997 ◽  
Vol 138 (2) ◽  
pp. 225-238 ◽  
Author(s):  
Javier F. Cáceres ◽  
Tom Misteli ◽  
Gavin R. Screaton ◽  
David L. Spector ◽  
Adrian R. Krainer

SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo. We observed striking differences in the localization signals present in several human SR proteins. In contrast to earlier studies of RS domains in the Drosophila suppressor-of-white-apricot (SWAP) and Transformer (Tra) alternative splicing factors, we found that the RS domain of SF2/ASF is neither necessary nor sufficient for targeting to the nuclear speckles. Although this RS domain is a nuclear localization signal, subnuclear targeting to the speckles requires at least two of the three constituent domains of SF2/ASF, which contain additive and redundant signals. In contrast, in two SR proteins that have a single RRM (SC35 and SRp20), the RS domain is both necessary and sufficient as a targeting signal to the speckles. We also show that RRM2 of SF2/ASF plays an important role in alternative splicing specificity: deletion of this domain results in a protein that, although active in alternative splicing, has altered specificity in 5′ splice site selection. These results demonstrate the modularity of SR proteins and the importance of individual domains for their cellular localization and alternative splicing function in vivo.


1996 ◽  
Vol 7 (7) ◽  
pp. 1059-1073 ◽  
Author(s):  
K Zu ◽  
M L Sikes ◽  
S R Haynes ◽  
A L Beyer

The Drosophila melanogaster genes Hrb87F and Hrb98DE encode the fly proteins HRB87F and HRB98DE (also known as hrp36 and hrp38, respectively) that are most similar in sequence and function to mammalian A/B-type hnRNP proteins. Using overexpression and deletion mutants of Hrb87F, we have tested the hypothesis that the ratio of A/B hnRNP proteins to SR family proteins modulates certain types of alternative splice-site selection. In flies in which HRB87F/hrp36 had been overexpressed 10- to 15-fold above normal levels, aberrant internal exon skipping was induced in at least one endogenous transcript, the dopa decarboxylase (Ddc) pre-mRNA, which previously had been shown to be similarly affected by excess HRB98DE/hrp38. In a second endogenous pre-mRNA, excess HRB87F/hrp36 had no effect on alternative 3' splice-site selection, as expected from mammalian hnRNP studies. Immunolocalization of the excess hnRNP protein showed that it localized correctly to the nucleus, specifically to sites on or near chromosomes, and that the peak of exon-skipping activity in Ddc RNA correlated with the peak of chromosomally associated hnRNP protein. The chromosomal association and level of the SR family of proteins were not significantly affected by the large increase in hnRNP proteins during this time period. Although these results are consistent with a possible role for hnRNP proteins in alternative splicing, the more interesting finding was the failure to detect significant adverse effects on flies with a greatly distorted ratio of hnRNPs to SR proteins. Electron microscopic visualization of the general population of active genes in flies overexpressing hnRNP proteins also indicated that the great majority of genes seemed normal in terms of cotranscriptional RNA processing events, although there were a few abnormalities consistent with rare exon-skipping events. Furthermore, in a Hrb87F null mutant, which is viable, the normal pattern of Ddc alternative splicing was observed, indicating that HRB87F/hrp36 is not required for Ddc splicing regulation. Thus, although splice-site selection can be affected in at least a few genes by gross overexpression of this hnRNP protein, the combined evidence suggests that if it plays a general role in alternative splicing in vivo, the role can be provided by other proteins with redundant functions, and the role is independent of its concentration relative to SR proteins.


2006 ◽  
Vol 85 (10) ◽  
pp. 894-899 ◽  
Author(s):  
J.D. Bartlett ◽  
R. L. Ball ◽  
T. Kawai ◽  
C.E. Tye ◽  
M. Tsuchiya ◽  
...  

Amelogenin RNA transcripts undergo extensive alternative splicing, and MMP-20 processes the isoforms following their secretion. Since amelogenins have been ascribed cell-signaling activities, we asked if a lack of proteolytic processing by MMP-20 affects amelogenin signaling and consequently alters amelogenin splice site selection. RT-PCR analyses of amelogenin mRNA between control and Mmp20− /−mice revealed no differences in the splicing pattern. We characterized 3 previously unidentified amelogenin alternatively spliced transcripts and demonstrated that exon-8-encoded amelogenin isoforms are processed by MMP-20. Transcripts with exon 8 were expressed approximately five-fold less than those with exon 7. Analyses of the mouse and rat amelogenin gene structures confirmed that exon 8 arose in a duplication of exons 4 through 5, with translocation of the copy downstream of exon 7. No downstream genomic sequences homologous to exons 4–5 were present in the bovine or human amelogenin genes, suggesting that this translocation occurred only in rodents.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2647
Author(s):  
Namjeong Choi ◽  
Yongchao Liu ◽  
Jagyeong Oh ◽  
Jiyeon Ha ◽  
Xuexiu Zheng ◽  
...  

Splicing factor 3b subunit 1 (SF3B1) is an essential protein in spliceosomes and mutated frequently in many cancers. While roles of SF3B1 in single intron splicing and roles of its cancer-linked mutant in aberrant splicing have been identified to some extent, regulatory functions of wild-type SF3B1 in alternative splicing (AS) are not well-understood yet. Here, we applied RNA sequencing (RNA-seq) to analyze genome-wide AS in SF3B1 knockdown (KD) cells and to identify a large number of skipped exons (SEs), with a considerable number of alternative 5′ splice-site selection, alternative 3′ splice-site selection, mutually exclusive exons (MXE), and retention of introns (RI). Among altered SEs by SF3B1 KD, survival motor neuron 2 (SMN2) pre-mRNA exon 7 splicing was a regulatory target of SF3B1. RT-PCR analysis of SMN exon 7 splicing in SF3B1 KD or overexpressed HCT116, SH-SY5Y, HEK293T, and spinal muscular atrophy (SMA) patient cells validated the results. A deletion mutation demonstrated that the U2 snRNP auxiliary factor 65 kDa (U2AF65) interaction domain of SF3B1 was required for its function in SMN exon 7 splicing. In addition, mutations to lower the score of the polypyrimidine tract (PPT) of exon 7, resulting in lower affinity for U2AF65, were not able to support SF3B1 function, suggesting the importance of U2AF65 in SF3B1 function. Furthermore, the PPT of exon 7 with higher affinity to U2AF65 than exon 8 showed significantly stronger interactions with SF3B1. Collectively, our results revealed SF3B1 function in SMN alternative splicing.


2004 ◽  
Vol 381 (2) ◽  
pp. 343-350 ◽  
Author(s):  
Vita DAUKSAITE ◽  
Göran AKUSJÄRVI

The human splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2) is modular in structure with two RNA-binding domains (RBD1 and RBD2) and a C-terminal domain rich in arginine–serine dipeptide repeats. ASF/SF2 is an essential splicing factor that also functions as an important regulator of alternative splicing. In adenovirus E1A (early region 1A) alternative pre-mRNA splicing, ASF/SF2 functions as a strong inducer of proximal 5′-splice-site selection, both in vitro and in vivo. In the present study, we tested the functional role of individual domains of ASF/SF2 in alternative splicing in vitro. We show that ASF/SF2-RBD2 is the critical domain controlling E1A alternative splicing. In fact, RBD2 alone is sufficient to mimic the activity of the full-length ASF/SF2 protein as an inducer of proximal 5′-splice-site selection in vitro. The RBD2 domain induces a switch to E1A-proximal 5′-splice-site usage by repressing distal 12 S splicing and simultaneously stimulates proximal 13 S splicing. In contrast, the ASF/SF2-RBD1 domain has a more general splicing enhancer phenotype and appears to stimulate preferentially cap-proximal 5′-splice-site selection. Furthermore, the SWQDLKD motif, which is conserved in all SR proteins (serine/arginine-rich proteins) containing two RBDs, and the ribonucleoprotein-1-type RNA recognition motif were both found to be necessary for the alternative splice-site-switching activity of ASF/SF2. The RNP-1 motif was necessary for efficient RNA binding, whereas the SWQDLKD motif most probably contributes by functioning as a surface-mediating critical protein–protein contact during spliceosome assembly.


1999 ◽  
Vol 77 (4) ◽  
pp. 293-298 ◽  
Author(s):  
David F Stojdl ◽  
John C Bell

The eukaryotic genome codes for most of its proteins though discontinuous coding sequences called exons, which are separated by noncoding sequences known as introns. Following transcription of a gene, these exons must be spliced precisely, removing the intervening introns, to form meaningful mature messenger RNAs (mRNA) that are transported to the cytoplasm and translated by the ribosomal machinery. To add yet another level of complexity, a process known as alternative splicing exists, whereby a single pre-mRNA can give rise to two or more mature mRNAs depending on the combination of exons spliced together. Alternative splicing of pre-mRNAs is emerging as an important mechanism for gene regulation in many organisms. The classic example of splicing as a regulator of genetic information during a developmental process is sex determination in Drosophila. The now well-characterized cascade of sex-specific alternative splicing events demonstrates nicely how the control of splice site selection during pre-mRNA processing can have a profound effect on the development of an organism. The factors involved in pre-mRNA splicing and alternative splice site selection have been the subject of active study in recent years. Emerging from these studies is a picture of regulation based on protein-protein, protein-RNA, and RNA-RNA interactions. How the interaction of the various splicing constituents is controlled, however, is still poorly understood. One of the mechanisms of regulation that has received attention recently is that of posttranslational phosphorylation. In the following article, we cite the evidence for a role of phosphorylation in constitutive and alternative splicing and discuss some of the recent information on the biochemistry and biology of the enzymes involved.Key words: phosphorylation, splicing, spliceosome, Clk kinases, SR proteins.


Sign in / Sign up

Export Citation Format

Share Document