scholarly journals Structural basis of transcription activation by the global regulator Spx

2021 ◽  
Vol 49 (18) ◽  
pp. 10756-10769
Author(s):  
Jing Shi ◽  
Fangfang Li ◽  
Aijia Wen ◽  
Libing Yu ◽  
Lu Wang ◽  
...  

Abstract Spx is a global transcriptional regulator in Gram-positive bacteria and has been inferred to efficiently activate transcription upon oxidative stress by engaging RNA polymerase (RNAP) and promoter DNA. However, the precise mechanism by which it interacts with RNAP and promoter DNA to initiate transcription remains obscure. Here, we report the cryo-EM structure of an intact Spx-dependent transcription activation complex (Spx–TAC) from Bacillus subtilis at 4.2 Å resolution. The structure traps Spx in an active conformation and defines key interactions accounting for Spx-dependent transcription activation. Strikingly, an oxidized Spx monomer engages RNAP by simultaneously interacting with the C-terminal domain of RNAP alpha subunit (αCTD) and σA. The interface between Spx and αCTD is distinct from those previously reported activators, indicating αCTD as a multiple target for the interaction between RNAP and various transcription activators. Notably, Spx specifically wraps the conserved –44 element of promoter DNA, thereby stabilizing Spx–TAC. Besides, Spx interacts extensively with σA through three different interfaces and promotes Spx-dependent transcription activation. Together, our structural and biochemical results provide a novel mechanistic framework for the regulation of bacterial transcription activation and shed new light on the physiological roles of the global Spx-family transcription factors.

Science ◽  
2017 ◽  
Vol 358 (6365) ◽  
pp. 947-951 ◽  
Author(s):  
Bin Liu ◽  
Chuan Hong ◽  
Rick K. Huang ◽  
Zhiheng Yu ◽  
Thomas A. Steitz

In bacteria, the activation of gene transcription at many promoters is simple and only involves a single activator. The cyclic adenosine 3′,5′-monophosphate receptor protein (CAP), a classic activator, is able to activate transcription independently through two different mechanisms. Understanding the class I mechanism requires an intact transcription activation complex (TAC) structure at a high resolution. Here we report a high-resolution cryo–electron microscopy structure of an intact Escherichia coli class I TAC containing a CAP dimer, a σ70–RNA polymerase (RNAP) holoenzyme, a complete class I CAP-dependent promoter DNA, and a de novo synthesized RNA oligonucleotide. The structure shows how CAP wraps the upstream DNA and how the interactions recruit RNAP. Our study provides a structural basis for understanding how activators activate transcription through the class I recruitment mechanism.


2019 ◽  
Vol 116 (38) ◽  
pp. 18923-18927 ◽  
Author(s):  
Alexis Jaramillo Cartagena ◽  
Amy B. Banta ◽  
Nikhil Sathyan ◽  
Wilma Ross ◽  
Richard L. Gourse ◽  
...  

In bacteria, a primary σ-factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative σ-factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative σ-factors are negatively regulated by anti–σ-factors. In Escherichia coli, Salmonella enterica, and many other γ-proteobacteria, the transcription factor Crl positively regulates the alternative σS-regulon by promoting the association of σS with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-σS-RNAP in an open promoter complex with a σS-regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of σS (σS2), the structure, along with p-benzoylphenylalanine cross-linking, reveals that Crl interacts with a structural element of the RNAP β′-subunit that we call the β′-clamp-toe (β′CT). Deletion of the β′CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-β′CT interaction. We conclude that Crl activates σS-dependent transcription in part through stabilizing σS-RNAP by tethering σS2 and the β′CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated σ-activators.


2019 ◽  
Author(s):  
Alexis Jaramillo Cartagena ◽  
Amy B. Banta ◽  
Nikhil Sathyan ◽  
Wilma Ross ◽  
Richard L. Gourse ◽  
...  

AbstractIn bacteria, a primary σ factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative σ factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative σ factors are negatively regulated by anti-σ factors. In Escherichia coli, Salmonella enterica, and many other γ-proteobacteria, the transcription factor Crl positively regulates the alternative σS regulon by promoting the association of σS with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-σS-RNAP in an open promoter complex with a σS regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of σS (σS), the structure, along with p-benzoylphenylalanine crosslinking, reveals that Crl interacts with a structural element of the RNAP β’ subunit we call the β’-clamp-toe (β’CT). Deletion of the β’CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-β’CT interaction. We conclude that Crl activates σS-dependent transcription in part through stabilizing σS-RNAP by tethering σS and the β’CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated σ-activators.Significance StatementIn bacteria, multiple σ factors can bind to a common core RNA polymerase (RNAP) to alter global transcriptional programs in response to environmental stresses. Many γ-proteobacteria, including the pathogens Yersinia pestis, Vibrio cholera, Escherichia coli, and Salmonella typhimurium, encode Crl, a transcription factor that activates σS-dependent genes. Many of these genes are involved in processes important for infection, such as biofilm formation. We determined a high-resolution cryo-electron microscopy structure of a Crl-σS-RNAP transcription initiation complex. The structure, combined with biochemical experiments, shows that Crl stabilizes σS-RNAP by tethering σS directly to the RNAP.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongming Du ◽  
Yinxia Yan ◽  
Si Xie ◽  
Hao Huang ◽  
Xin Wang ◽  
...  

AbstractSpindlin1 is a unique multivalent epigenetic reader that facilitates ribosomal RNA transcription. In this study, we provide molecular and structural basis by which Spindlin1 acts in complex with C11orf84 to preferentially recognize non-canonical bivalent mark of trimethylated lysine 4 and lysine 9 present on the same histone H3 tail (H3K4me3K9me3). We demonstrate that C11orf84 binding stabilizes Spindlin1 and enhances its association with bivalent H3K4me3K9me3 mark. The functional analysis suggests that Spindlin1/C11orf84 complex can displace HP1 proteins from H3K4me3K9me3-enriched rDNA loci, thereby facilitating the conversion of these poised rDNA repeats from the repressed state to the active conformation, and the consequent recruitment of RNA Polymerase I for rRNA transcription. Our study uncovers a previously unappreciated mechanism of bivalent H3K4me3K9me3 recognition by Spindlin1/C11orf84 complex required for activation of rRNA transcription.


2012 ◽  
Vol 302 (6) ◽  
pp. 270-275 ◽  
Author(s):  
Younho Choi ◽  
Kwang-Pyo Kim ◽  
Kyumson Kim ◽  
Jeongjoon Choi ◽  
Hakdong Shin ◽  
...  

iScience ◽  
2021 ◽  
pp. 102449
Author(s):  
Wei Shi ◽  
Baoyue Zhang ◽  
Yanan Jiang ◽  
Chang Liu ◽  
Wei Zhou ◽  
...  

mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Jihong Li ◽  
Menglin Ma ◽  
Mahfuzur R. Sarker ◽  
Bruce A. McClane

ABSTRACT CodY is known to regulate various virulence properties in several Gram-positive bacteria but has not yet been studied in the important histotoxic and intestinal pathogen Clostridium perfringens. The present study prepared an isogenic codY-null mutant in C. perfringens type D strain CN3718 by insertional mutagenesis using the Targetron system. Western blot analysis indicated that, relative to wild-type CN3718 or a complementing strain, this isogenic codY mutant produces reduced levels of epsilon toxin (ETX). Using supernatants from cultures of the wild-type, codY-null mutant, and complementing strains, CodY regulation of ETX production was shown to have cytotoxic consequences for MDCK cells. The CodY regulatory effect on ETX production was specific, since the codY-null mutant still made wild-type levels of alpha-toxin and perfringolysin O. Sialidase activity measurements and sialidase Western blot analysis of supernatants from CN3718 and its isogenic derivatives showed that CodY represses overall exosialidase activity due to a reduced presence of NanH in culture supernatants. Inactivation of the codY gene significantly decreased the adherence of CN3718 vegetative cells or spores to host Caco-2 cells. Finally, the codY mutant showed increased spore formation under vegetative growth conditions, although germination of these spores was impaired. Overall, these results identify CodY as a global regulator of many C. perfringens virulence-associated properties. Furthermore, they establish that, via CodY, CN3718 coordinately regulates many virulence-associated properties likely needed for intestinal infection. IMPORTANCE Clostridium perfringens is a major human and livestock pathogen because it produces many potent toxins. C. perfringens type D strains cause intestinal infections by producing toxins, especially epsilon toxin (ETX). Previous studies identified CodY as a regulator of certain virulence properties in other Gram-positive bacteria. Our study now demonstrates that CodY is a global regulator of virulence-associated properties for type D strain CN3718. It promotes production of ETX, attachment of CN3718 vegetative cells or spores to host enterocyte-like Caco-2 cells, and spore germination; the last two effects may assist intestinal colonization. In contrast, CodY represses sporulation. These results provide the first evidence that CodY can function as a global regulator of C. perfringens virulence-associated properties and that this strain coordinately regulates its virulence-associated properties using CodY to increase ETX production, host cell attachment, and spore germination but to repress sporulation, as would be optimal during type D intestinal infection.


Sign in / Sign up

Export Citation Format

Share Document