structural mechanism
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 183)

H-INDEX

65
(FIVE YEARS 12)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
María Teresa Bueno-Carrasco ◽  
Jorge Cuéllar ◽  
Marte I. Flydal ◽  
César Santiago ◽  
Trond-André Kråkenes ◽  
...  

AbstractTyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of dopamine (DA) and other catecholamines, and its dysfunction leads to DA deficiency and parkinsonisms. Inhibition by catecholamines and reactivation by S40 phosphorylation are key regulatory mechanisms of TH activity and conformational stability. We used Cryo-EM to determine the structures of full-length human TH without and with DA, and the structure of S40 phosphorylated TH, complemented with biophysical and biochemical characterizations and molecular dynamics simulations. TH presents a tetrameric structure with dimerized regulatory domains that are separated 15 Å from the catalytic domains. Upon DA binding, a 20-residue α-helix in the flexible N-terminal tail of the regulatory domain is fixed in the active site, blocking it, while S40-phosphorylation forces its egress. The structures reveal the molecular basis of the inhibitory and stabilizing effects of DA and its counteraction by S40-phosphorylation, key regulatory mechanisms for homeostasis of DA and TH.


Author(s):  
Julia F. Greiwe ◽  
Thomas C. R. Miller ◽  
Julia Locke ◽  
Fabrizio Martino ◽  
Steven Howell ◽  
...  

AbstractLoading of the eukaryotic replicative helicase onto replication origins involves two MCM hexamers forming a double hexamer (DH) around duplex DNA. During S phase, helicase activation requires MCM phosphorylation by Dbf4-dependent kinase (DDK), comprising Cdc7 and Dbf4. DDK selectively phosphorylates loaded DHs, but how such fidelity is achieved is unknown. Here, we determine the cryogenic electron microscopy structure of Saccharomyces cerevisiae DDK in the act of phosphorylating a DH. DDK docks onto one MCM ring and phosphorylates the opposed ring. Truncation of the Dbf4 docking domain abrogates DH phosphorylation, yet Cdc7 kinase activity is unaffected. Late origin firing is blocked in response to DNA damage via Dbf4 phosphorylation by the Rad53 checkpoint kinase. DDK phosphorylation by Rad53 impairs DH phosphorylation by blockage of DDK binding to DHs, and also interferes with the Cdc7 active site. Our results explain the structural basis and regulation of the selective phosphorylation of DNA-loaded MCM DHs, which supports bidirectional replication.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Elvira Tarasova ◽  
Reza Khayat

Rolling circle replication (RCR) is ubiquitously used by cellular and viral systems for genome and plasmid replication. While the molecular mechanism of RCR has been described, the structural mechanism is desperately lacking. Circular-rep encoded single stranded DNA (CRESS-DNA) viruses employ a viral encoded replicase (Rep) to initiate RCR. The recently identified prokaryotic homologues of Reps may also be responsible for initiating RCR. Reps are composed of an endonuclease, oligomerization, and ATPase domain. Recent structural studies have provided structures for all these domains such that an overall mechanism of RCR initiation can begin to be synthesized. However, structures of Rep in complex with its various DNA substrates and/or ligands are lacking. Here we provide a 3D bioinformatic review of the current structural information available for Reps. We combine an excess of 1590 sequences with experimental and predicted structural data from 22 CRESS-DNA groups to identify similarities and differences between Reps that lead to potentially important functional sites. Experimental studies of these sites may shed light on how Reps execute their functions. Furthermore, we identify Rep-substrate or Rep-ligand structures that are urgently needed to better understand the structural mechanism of RCR.


2021 ◽  
Author(s):  
Lin Mei ◽  
Matthew J Reynolds ◽  
Damien Garbett ◽  
Rui Gong ◽  
Tobias Meyer ◽  
...  

To fulfill the cytoskeleton's diverse functions in cell mechanics and motility, actin networks with specialized architectures are built by crosslinking proteins, which bridge filaments to control micron-scale network geometry through nanoscale binding interactions via poorly defined structural mechanisms. Here, we introduce a machine-learning enabled cryo-EM pipeline for visualizing active crosslinkers, which we use to analyze human T-plastin, a member of the evolutionarily ancient plastin/fimbrin family of tandem calponin-homology domain (CHD) proteins. We define a sequential bundling mechanism which enables T-plastin to bridge filaments in both parallel and anti-parallel orientations. Our structural, biochemical, and cell biological data highlight inter-CHD linkers as key structural elements underlying flexible but stable crosslinking which are likely to be disrupted by mutations causing hereditary bone diseases. Beyond revealing how plastins are evolutionary optimized to crosslink dense actin networks with mixed polarity, our cryo-EM workflow will broadly enable analysis of the structural mechanisms underlying cytoskeletal network construction.


2021 ◽  
Author(s):  
Atefeh Ghorbani ◽  
Justin John King ◽  
Mani Larijani

Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID’s optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis.  The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge, most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sean P. Carney ◽  
Wen Ma ◽  
Kevin D. Whitley ◽  
Haifeng Jia ◽  
Timothy M. Lohman ◽  
...  

AbstractUvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunli Yan ◽  
Thomas Dodd ◽  
Jina Yu ◽  
Bernice Leung ◽  
Jun Xu ◽  
...  

AbstractTranscription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rahul Saxena ◽  
Sanjeev Kishore ◽  
Vandana Srivastava

PurposeThe paper attempts to frame the challenge of managing the transition to a sustainable economy by way of a conceptual model consisting of a zero-footprint regulatory regime and a sustainability fund.Design/methodology/approachA conceptual model of the sustainable industrial revolution has been developed based on the learnings from industries such as originators (mining), farming, pharmaceuticals, pesticides and chemicals and long-lasting artefacts against an overall perspective.FindingsIt is suggested to have an institutional structural mechanism in place to ensure that footprint is minimized through recycling including refurbishing, resale or transformation. This includes management of recycling businesses through execution of a zero-waste regulatory regime that will build and use a sustainability fund.Research limitations/implicationsThe limitations of the paper are arising out of the topic being an issue of gigantic proportions with immense complexity. An attempt has been made to bring out the inescapability and the imperative of a sustainable industrial revolution.Practical implicationsThis paper presents practical aspects such as collusion between trash and recycling businesses, land use and social aspects of criticality of public support. If implemented, the suggested model can make a paradigm shift in the way firms, industry and governments can handle the challenge of sustainability.Originality/valueThe value of this conceptual paper lies in an attempt to extend the learning organization framework to the concept of a regulatory model for sustainability that is not limited to the definition of a firm but stands extended to industries and to the economics, land use and demographics of the planet.


Sign in / Sign up

Export Citation Format

Share Document