scholarly journals 355. A Novel Likelihood-Based Model to Estimate SARS-CoV-2 Viral Titer from Next-Generation Sequencing Data

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S281-S282
Author(s):  
Heather L Wells ◽  
Joseph Barrows ◽  
Mara Couto-Rodriguez ◽  
Xavier O Jirau Serrano ◽  
Marilyne Debieu ◽  
...  

Abstract Background The quantitative level of pathogens present in a host is a major driver of infectious disease (ID) state and outcome. However, the majority of ID diagnostics are qualitative. Next-generation sequencing (NGS) is an emerging ID diagnostics and research tool to provide insights, including tracking transmission, evolution, and identifying novel strains. Methods We built a novel likelihood-based computational method to leverage pathogen-specific genome-wide NGS data to detect SARS-CoV-2, profile genetic variants, and furthermore quantify levels of these pathogens. We used de-identified clinical specimens tested for SARS-CoV-2 using RT-PCR, SARS-CoV-2 NGS Assay (hybrid capture, Twist Bioscience), or ARTIC (amplicon-based) platform, and COVID-DX software. A training (n=87) and validation (n=22) set was selected to establish the strength of our quantification model. We fit non-uniform probabilistic error profiles to a deterministic sigmoidal equation that more realistically represents observed data and used likelihood maximized over several different read depths to improve accuracy over a wide range of values of viral load. Given the proportion of the genome covered at varying depths for a single sample as input data, our model estimated the Ct of that sample as the value that produces the maximum likelihood of generating the observed genome coverage data. Results The model fit on 87 SARS-CoV-2 NGS Assay training samples produced a good fit to the 22 validation samples, with a coefficient of correlation (r2) of ~0.8. The accuracy of the model was high (mean absolute % error of ~10%, meaning our model is able to predict the Ct value of each sample within a margin of ±10% on average). Because of the nature of the commonly used ARTIC protocol, we found that all quantitative signals in this data were lost during PCR amplification and the model is not applicable for quantification of samples captured this way. The ability to model quantification is a major advantage of the SARS-CoV-2 NGS assay protocol. The likelihood-based model to estimate SARS-CoV-2 viral titer Left Observed genome coverage (y-axis) plotted against Ct value (x-axis). The best-fitting logistic curve is demonstrated with a red line with shaded areas above and below representing the fitted error profile. RIGHT: Model-estimated Ct values (y-axis) compared to laboratory Ct values (x-axis) with grey bars representing estimated confidence intervals. The 1:1 diagonal is shown as a dotted line. Conclusion To our knowledge, this is the first model to incorporate sequence data mapped across the genome of a pathogen to quantify the level of that pathogen in a clinical specimen. This has implications in ID diagnostics, research, and metagenomics. Disclosures Heather L. Wells, MPH, Biotia, Inc. (Consultant) Joseph Barrows, MS, Biotia (Employee) Mara Couto-Rodriguez, MS, Biotia (Employee) Xavier O. Jirau Serrano, B.S., Biotia (Employee) Marilyne Debieu, PhD, Biotia (Employee) Karen Wessel, PhD, Labor Zotz/Klimas (Employee) Christopher Mason, PhD, Biotia (Board Member, Advisor or Review Panel member, Shareholder) Dorottya Nagy-Szakal, MD PhD, Biotia Inc (Employee, Shareholder) Niamh B. O’Hara, PhD, Biotia (Board Member, Employee, Shareholder)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Ludwig Mann ◽  
Kathrin M. Seibt ◽  
Beatrice Weber ◽  
Tony Heitkam

Abstract Background Extrachromosomal circular DNAs (eccDNAs) are ring-like DNA structures physically separated from the chromosomes with 100 bp to several megabasepairs in size. Apart from carrying tandemly repeated DNA, eccDNAs may also harbor extra copies of genes or recently activated transposable elements. As eccDNAs occur in all eukaryotes investigated so far and likely play roles in stress, cancer, and aging, they have been prime targets in recent research—with their investigation limited by the scarcity of computational tools. Results Here, we present the ECCsplorer, a bioinformatics pipeline to detect eccDNAs in any kind of organism or tissue using next-generation sequencing techniques. Following Illumina-sequencing of amplified circular DNA (circSeq), the ECCsplorer enables an easy and automated discovery of eccDNA candidates. The data analysis encompasses two major procedures: first, read mapping to the reference genome allows the detection of informative read distributions including high coverage, discordant mapping, and split reads. Second, reference-free comparison of read clusters from amplified eccDNA against control sample data reveals specifically enriched DNA circles. Both software parts can be run separately or jointly, depending on the individual aim or data availability. To illustrate the wide applicability of our approach, we analyzed semi-artificial and published circSeq data from the model organisms Homo sapiens and Arabidopsis thaliana, and generated circSeq reads from the non-model crop plant Beta vulgaris. We clearly identified eccDNA candidates from all datasets, with and without reference genomes. The ECCsplorer pipeline specifically detected mitochondrial mini-circles and retrotransposon activation, showcasing the ECCsplorer’s sensitivity and specificity. Conclusion The ECCsplorer (available online at https://github.com/crimBubble/ECCsplorer) is a bioinformatics pipeline to detect eccDNAs in any kind of organism or tissue using next-generation sequencing data. The derived eccDNA targets are valuable for a wide range of downstream investigations—from analysis of cancer-related eccDNAs over organelle genomics to identification of active transposable elements.


Author(s):  
Hyungtaek Jung ◽  
Brendan Jeon ◽  
Daniel Ortiz-Barrientos

Storing and manipulating Next Generation Sequencing (NGS) file formats for understanding biological phenomena is an essential but difficult task in the life sciences. Yet, most methods for analysing NGS data require complex command-line tools in high-performance computing (HPC) or web-based servers and have not yet been implemented in comprehensive, easy-to-use software. Here we present easyfm (easy file manipulation), a free standalone Graphical User Interface (GUI) software with Python support that can be used to facilitate the rapid discovery of target sequences (or user’s interest) in NGS datasets for novice users (more accessible to biologists). It enables them to perform end-to-end reproducible data analyses using a desktop application (Windows, Mac and Linux). Unlike existing tools, the GUI-based easyfm is not dependent on any HPC system and can be operated without an internet connection. For user-friendliness and convenience, easyfm was developed with four work modules and a secondary GUI window, covering different aspects of NGS data analysis, including post-processing, filtering, format conversion, generating results, real-time log, and help. In combination with the executable tools (BLAST+ and BLAT) and Python, easyfm allows the user to set analysis parameters, select/extract regions of interest, examine the input and output results, and convert to a wide range of file formats. To help augment the functionality of existing web-based and command-line tools, easyfm, a self-contained program, comes with extensive documentation (https://github.com/TaekAndBrendan/easyfm). This specific benefit allows easyfm to seamlessly integrate visual and interactive representations of NGS files, supporting a wider scope of bioinformatics applications in the life sciences.


2021 ◽  
Author(s):  
Ludwig Mann ◽  
Kathrin M. Seibt ◽  
Beatrice Weber ◽  
Tony Heitkam

Motivation: Extrachromosomal circular DNAs (eccDNAs) are ring-like DNA structures physically separated from the chromosomes with 100 bp to several megabasepairs in size. Apart from carrying tandemly repeated DNA, eccDNAs may also harbor extra copies of genes or recently activated transposable elements. As eccDNAs occur in all eukaryotes investigated so far and likely play roles in stress, cancer, and aging, they have been prime targets in recent research - with their investigation limited by the scarcity of computational tools. Results: Here, we present the ECCsplorer, a bioinformatics pipeline to detect eccDNAs in any kind of organism or tissue using next-generation sequencing techniques. Following Illumina-sequencing of amplified circular DNA (circSeq), the ECCsplorer enables an easy and automated discovery of eccDNA candidates. The data analysis encompasses two major procedures: First, read mapping to the reference genome allows the detection of informative read distributions including high coverage, discordant mapping, and split reads. Second, reference-free comparison of read clusters from amplified eccDNA against control sample data reveals specifically enriched DNA circles. Both software parts can be run separately or jointly, depending on the individual aim or data availability. To illustrate the wide applicability of our approach, we analyzed semi-artificial and published circSeq data from the model organisms H. sapiens and A. thaliana, and generated circSeq reads from the non-model crop B. vulgaris. We clearly identified eccDNA candidates from all datasets, with and without reference genomes. The ECCsplorer pipeline specifically detected mitochondrial mini-circles and retrotransposon activation, showcasing the ECCsplorer's sensitivity and specificity. The derived eccDNA targets are valuable for a wide range of downstream investigations - from analysis of cancer-related eccDNAs over organelle genomics to identification of active transposable elements. Availability and implementation: The ECCsplorer pipeline is available on GitHub at https://github.de/crimBubble/ECCsplorer under the GNU license.


Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


2011 ◽  
Vol 9 (6) ◽  
pp. 238-244 ◽  
Author(s):  
Tongwu Zhang ◽  
Yingfeng Luo ◽  
Kan Liu ◽  
Linlin Pan ◽  
Bing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document