viral titer
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 45)

H-INDEX

16
(FIVE YEARS 5)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wikum H. Jayasinghe ◽  
Hangil Kim ◽  
Yusuke Nakada ◽  
Chikara Masuta

AbstractCucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saeed Behzadinasab ◽  
Alex W. H. Chin ◽  
Mohsen Hosseini ◽  
Leo L. M. Poon ◽  
William A. Ducker

AbstractTransfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13–16% or 0.8–0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3–9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S281-S282
Author(s):  
Heather L Wells ◽  
Joseph Barrows ◽  
Mara Couto-Rodriguez ◽  
Xavier O Jirau Serrano ◽  
Marilyne Debieu ◽  
...  

Abstract Background The quantitative level of pathogens present in a host is a major driver of infectious disease (ID) state and outcome. However, the majority of ID diagnostics are qualitative. Next-generation sequencing (NGS) is an emerging ID diagnostics and research tool to provide insights, including tracking transmission, evolution, and identifying novel strains. Methods We built a novel likelihood-based computational method to leverage pathogen-specific genome-wide NGS data to detect SARS-CoV-2, profile genetic variants, and furthermore quantify levels of these pathogens. We used de-identified clinical specimens tested for SARS-CoV-2 using RT-PCR, SARS-CoV-2 NGS Assay (hybrid capture, Twist Bioscience), or ARTIC (amplicon-based) platform, and COVID-DX software. A training (n=87) and validation (n=22) set was selected to establish the strength of our quantification model. We fit non-uniform probabilistic error profiles to a deterministic sigmoidal equation that more realistically represents observed data and used likelihood maximized over several different read depths to improve accuracy over a wide range of values of viral load. Given the proportion of the genome covered at varying depths for a single sample as input data, our model estimated the Ct of that sample as the value that produces the maximum likelihood of generating the observed genome coverage data. Results The model fit on 87 SARS-CoV-2 NGS Assay training samples produced a good fit to the 22 validation samples, with a coefficient of correlation (r2) of ~0.8. The accuracy of the model was high (mean absolute % error of ~10%, meaning our model is able to predict the Ct value of each sample within a margin of ±10% on average). Because of the nature of the commonly used ARTIC protocol, we found that all quantitative signals in this data were lost during PCR amplification and the model is not applicable for quantification of samples captured this way. The ability to model quantification is a major advantage of the SARS-CoV-2 NGS assay protocol. The likelihood-based model to estimate SARS-CoV-2 viral titer Left Observed genome coverage (y-axis) plotted against Ct value (x-axis). The best-fitting logistic curve is demonstrated with a red line with shaded areas above and below representing the fitted error profile. RIGHT: Model-estimated Ct values (y-axis) compared to laboratory Ct values (x-axis) with grey bars representing estimated confidence intervals. The 1:1 diagonal is shown as a dotted line. Conclusion To our knowledge, this is the first model to incorporate sequence data mapped across the genome of a pathogen to quantify the level of that pathogen in a clinical specimen. This has implications in ID diagnostics, research, and metagenomics. Disclosures Heather L. Wells, MPH, Biotia, Inc. (Consultant) Joseph Barrows, MS, Biotia (Employee) Mara Couto-Rodriguez, MS, Biotia (Employee) Xavier O. Jirau Serrano, B.S., Biotia (Employee) Marilyne Debieu, PhD, Biotia (Employee) Karen Wessel, PhD, Labor Zotz/Klimas (Employee) Christopher Mason, PhD, Biotia (Board Member, Advisor or Review Panel member, Shareholder) Dorottya Nagy-Szakal, MD PhD, Biotia Inc (Employee, Shareholder) Niamh B. O’Hara, PhD, Biotia (Board Member, Employee, Shareholder)


Author(s):  
Yohei Takeda ◽  
Dulamjav Jamsransuren ◽  
Tomokazu Nagao ◽  
Yoko Fukui ◽  
Sachiko Matsuda ◽  
...  

As a result of the novel coronavirus disease 2019 pandemic, strengthening control measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent global issue. In addition to antiviral therapy and vaccination strategies, applying available virucidal substances for SARS-CoV-2 inactivation is also a target of research to prevent the spread of infection. Here, we evaluated the SARS-CoV-2 inactivation activity of a copper iodide (CuI) nanoparticle dispersion, which provides Cu + ions having high virucidal activity, and its mode of actions. In addition, the utility of CuI-doped film and fabric for SARS-CoV-2 inactivation was evaluated. The CuI dispersion exhibited time-dependent rapid virucidal activity. Analyses of the modes of action of CuI performed by western blotting and real-time reverse transcription polymerase chain reaction targeting viral proteins and the genome revealed that CuI treatment induced the destruction of these viral components. In this setting, the indirect action of CuI-derived reactive oxygen species contributed to the destruction of viral protein. Moreover, the CuI-doped film and fabric demonstrated rapid inactivation of the SARS-CoV-2 solution in which the viral titer was high. These findings indicated the utility of the CuI-doped film and fabric as anti-SARS-CoV-2 materials for the protection of high-touch environmental surfaces and surgical masks/protective clothes. Throughout this study, we demonstrated the effectiveness of CuI nanoparticles for inactivating SARS-CoV-2 and revealed a part of its virucidal mechanism of action. IMPORTANCE The COVID-19 pandemic has caused an unprecedented number of infections and deaths. As the spread of the disease is rapid and the risk of infection severe, hand and environmental hygiene may contribute to suppressing contact transmission of SARS-CoV-2. Here, we evaluated the SARS-CoV-2-inactivation activity of CuI nanoparticles, which provide the Cu + ion, as an antiviral agent, and provided advanced findings of the virucidal mechanisms of action of Cu + . Our results showed that the CuI dispersion as well as CuI-doped film and fabric rapidly inactivated SARS-CoV-2 with a high viral titer. We also demonstrated the CuI’s virucidal mechanisms of action, specifically, the destruction of viral proteins and the genome by CuI treatment. Protein destruction largely depended on CuI-derived reactive oxygen species. This study provides novel information about the utility and mechanisms of action of promising virucidal material against SARS-CoV-2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mireya Martínez-Pérez ◽  
Concepción Gómez-Mena ◽  
Luis Alvarado-Marchena ◽  
Riad Nadi ◽  
José Luis Micol ◽  
...  

The N6-methyladenosine (m6A) pathway has been widely described as a viral regulatory mechanism in animals. We previously reported that the capsid protein (CP) of alfalfa mosaic virus (AMV) interacts with the Arabidopsis m6A demethylase ALKBH9B regulating m6A abundance on viral RNAs (vRNAs) and systemic invasion of floral stems. Here, we analyze the involvement of other ALKBH9 proteins in AMV infection and we carry out a detailed evaluation of the infection restraint observed in alkbh9b mutant plants. Thus, via viral titer quantification experiments and in situ hybridization assays, we define the viral cycle steps that are altered by the absence of the m6A demethylase ALKBH9B in Arabidopsis. We found that ALKBH9A and ALKBH9C do not regulate the AMV cycle, so ALKBH9B activity seems to be highly specific. We also define that not only systemic movement is affected by the absence of the demethylase, but also early stages of viral infection. Moreover, our findings suggest that viral upload into the phloem could be blocked in alkbh9b plants. Overall, our results point to ALKBH9B as a possible new component of phloem transport, at least for AMV, and as a potential target to obtain virus resistance crops.


2021 ◽  
Author(s):  
Armando S. Flores-Torres ◽  
Adrian Rendon ◽  
Mario C. Salinas-Carmona ◽  
Eva Salinas ◽  
Adrian G. Rosas-Taraco

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1430
Author(s):  
Rafael G. Ferreira ◽  
Neal F. Gordon ◽  
Rick Stock ◽  
Demetri Petrides

The COVID-19 pandemic has motivated the rapid development of numerous vaccines that have proven effective against SARS-CoV-2. Several of these successful vaccines are based on the adenoviral vector platform. The mass manufacturing of these vaccines poses great challenges, especially in the context of a pandemic where extremely large quantities must be produced quickly at an affordable cost. In this work, two baseline processes for the production of a COVID-19 adenoviral vector vaccine, B1 and P1, were designed, simulated and economically evaluated with the aid of the software SuperPro Designer. B1 used a batch cell culture viral production step, with a viral titer of 5 × 1010 viral particles (VP)/mL in both stainless-steel and disposable equipment. P1 used a perfusion cell culture viral production step, with a viral titer of 1 × 1012 VP/mL in exclusively disposable equipment. Both processes were sized to produce 400 M/yr vaccine doses. P1 led to a smaller cost per dose than B1 ($0.15 vs. $0.23) and required a much smaller capital investment ($126 M vs. $299 M). The media and facility-dependent expenses were found to be the main contributors to the operating cost. The results indicate that adenoviral vector vaccines can be practically manufactured at large scale and low cost.


2021 ◽  
Author(s):  
Fabio Fais ◽  
Reda Juskeviciene ◽  
Veronica Francardo ◽  
Stéphanie Mateos ◽  
Samuel Constant ◽  
...  

Background: For SARS-CoV-2 and other respiratory viruses, the nasal epithelium is a key portal for infection. Therefore, the nose is an important target of prophylactic and therapeutic interventions against these viruses. We developed a nasal spray (AM-301, a medical device marketed as Bentrio) to protect against infection by SARS-CoV-2 and potentially other viruses. Aims of the study: To test the safety and efficacy of AM-301 against SARS-CoV-2 infection. Methods: AM-301 was tested on an in vitro 3D model of primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in prophylaxis and infection mitigation assays. Results: AM-301 did not have any detrimental effect on the nasal epithelium. Prophylactic treatment with AM-301 reduced viral titer significantly vs. controls over 4 days, reaching a maximum reduction of 99%. When treatment with AM-301 was started 24 or 30 h after infection, epithelia that received the formulation had a 12- or 14-fold lower titer than controls. Conclusion: AM-301 was found to be safe in vitro, and it significantly decelerated viral titer growth in experimental models of prophylaxis and mitigation. Its physical (non-pharmaceutical) mechanism of action, safety and efficacy pave the way for further investigation of its possible use against a broad spectrum of viruses, allergens and pollutants.


2021 ◽  
Author(s):  
Yuki Takamatsu ◽  
Masaki Imai ◽  
Kenji Maeda ◽  
Noriko Nakajima ◽  
Nobuyo Higashi-Kuwata ◽  
...  

Despite various attempts to treat SARS-CoV-2-infected patients with COVID-19-convalescent plasmas, neither appropriate approach nor clinical utility has been established. We examined the efficacy of administration of highly-neutralizing COVID-19-convalescent plasma (hn-plasmas) and such plasma-derived IgG administration using the Syrian hamster COVID-19 model. Two hn-plasmas, which were in the best 1% of 340 neutralizing-activity-determined convalescent plasma samples, were intraperitoneally administered to SARS-CoV-2-infected hamsters, resulting in significant reduction of viral titers in lungs by up to 32-fold as compared to the viral titers in hamsters receiving control non-neutralizing plasma, while with two moderately neutralizing plasmas (mn-plasmas) administered, viral titer reduction was by up to 6-fold. IgG fractions purified from the two hn-plasmas also reduced viral titers in lungs than those from the two mn-plasmas. The severity of lung lesions seen in hamsters receiving hn-plasmas was minimal to moderate as assessed using micro-computerized tomography, which histological examination confirmed. Western blotting revealed that all four COVID-19-convalescent-plasmas variably contained antibodies against SARS-CoV-2 components including the receptor-binding domain and S1 domain. The present data strongly suggest that administering potent-neutralizing-activity-confirmed COVID-19-convalescent plasmas would be efficacious in treating patients with COVID-19.


2021 ◽  
Vol 12 (2) ◽  
pp. 395-402
Author(s):  
Ralf Lucassen ◽  
Mirko Weide ◽  
Dirk Bockmühl

Not only since SARS-CoV-2, have transmission routes of viruses been of interest. Noroviruses e.g., can be transmitted via smear infection, are relatively stable in the environment and very resistant to chemical disinfection. Some studies determined the virucidal efficacy of laundering processes, but few studies focused on the virucidal efficacy of dishwashing processes. Here, especially consumer related conditions are of interest. Households for example are a hotspot of norovirus infection and thus a sufficient reduction of these and other viruses from dishes must be insured to avoid an infection via this route. The likelihood of such an event should not be underestimated, since it was shown that the washing machine can be a reservoir for the transmission of extended spectrum beta-lactamase producing bacteria in newborns. Although viruses do not replicate in these devices a transmission via contaminated cutlery e.g., cannot be excluded. Using a consumer related approach to determine the virucidal efficacy of dishwashers, we found a combination of a bleach containing dishwasher detergent, a cleaning temperature of 45 °C for 45 min and a rinsing temperature of 50 °C, to be sufficient to reduces viral titer of bovine corona virus, murine norovirus and modified vaccinia virus by 4.8, 4.2 and 3.8 logarithmic stages respectively.


Sign in / Sign up

Export Citation Format

Share Document