Product Energy Distributions

Author(s):  
Tomas Baer ◽  
William L. Hase

The measurement of product translational and rotational energies, and in some cases vibrational energy, is often more readily accomplished than the measurement of the dissociation rate. As a result there exists a considerable body of experimental information about product energy distributions (FED) for many classes of reactions. The only simple model for treating these FED is the statistical one; however, there is a considerable diversity in its application. In the dissociation of large molecules at moderate to large excess energies, the translational, rotational, and vibrational energy distributions can be treated as continuous functions. On the other hand, in the dissociation of triatomic molecules, it is often possible to measure the quantized rotational energy distribution for specific vibrational energy levels of the diatomic product. Just as in the determination of the dissociation rates, product energy partitioning is highly sensitive to the potential energy surface. If there is no reverse activation barrier, the product energies are often distributed statistically. That is, the distributions depend only upon the product phase space and are independent of the detailed shape of the potential energy surface. On the other hand, for reactions with a “tight” transition state located at the top of a reverse activation barrier, statistical redistribution of the product energies is often not possible. After passing through the transition-state region, the products move down the repulsive wall and rapidly dissociate with little chance to exchange and equilibrate the available energy. Often, such products are ejected with considerable translational energy. This happens in large as well as small molecules or ions. The resulting product energy partitioning is then highly nonstatistical, even though the dissociation rate is perfectly predicted by RRKM theory. That is, the dissociation rate and product energy partitioning are separate and uncoupled events. The rate is governed early in the reaction history by the structure of the transition state, while product energy partitioning is determined late in the reaction and is governed by the shape of the potential energy surface at large internuclear distances. The most effective model for treating product energy distributions (PEDs) of reactions with no reverse activation barriers is the statistical theory.

2020 ◽  
Author(s):  
Shi Jun Ang ◽  
Wujie Wang ◽  
Daniel Schwalbe-Koda ◽  
Simon Axelrod ◽  
Rafael Gomez-Bombarelli

<div>Modeling dynamical effects in chemical reactions, such as post-transition state bifurcation, requires <i>ab initio</i> molecular dynamics simulations due to the breakdown of simpler static models like transition state theory. However, these simulations tend to be restricted to lower-accuracy electronic structure methods and scarce sampling because of their high computational cost. Here, we report the use of statistical learning to accelerate reactive molecular dynamics simulations by combining high-throughput ab initio calculations, graph-convolution interatomic potentials and active learning. This pipeline was demonstrated on an ambimodal trispericyclic reaction involving 8,8-dicyanoheptafulvene and 6,6-dimethylfulvene. With a dataset size of approximately</div><div>31,000 M062X/def2-SVP quantum mechanical calculations, the computational cost of exploring the reactive potential energy surface was reduced by an order of magnitude. Thousands of virtually costless picosecond-long reactive trajectories suggest that post-transition state bifurcation plays a minor role for the reaction in vacuum. Furthermore, a transfer-learning strategy effectively upgraded the potential energy surface to higher</div><div>levels of theory ((SMD-)M06-2X/def2-TZVPD in vacuum and three other solvents, as well as the more accurate DLPNO-DSD-PBEP86 D3BJ/def2-TZVPD) using about 10% additional calculations for each surface. Since the larger basis set and the dynamic correlation capture intramolecular non-covalent interactions more accurately, they uncover longer lifetimes for the charge-separated intermediate on the more accurate potential energy surfaces. The character of the intermediate switches from entropic to thermodynamic upon including implicit solvation effects, with lifetimes increasing with solvent polarity. Analysis of 2,000 reactive trajectories on the chloroform PES shows a qualitative agreement with the experimentally-reported periselectivity for this reaction. This overall approach is broadly applicable and opens a door to the study of dynamical effects in larger, previously-intractable reactive systems.</div>


2019 ◽  
Vol 21 (25) ◽  
pp. 13766-13775 ◽  
Author(s):  
Xixi Hu ◽  
Junxiang Zuo ◽  
Changjian Xie ◽  
Richard Dawes ◽  
Hua Guo ◽  
...  

A full-dimensional potential energy surface for HO3, including the HO + O2dissociation asymptote, is developed and rigorous quantum dynamics calculations based on this PES have been carried out to compute the vibrational energy levels of HO3.


1997 ◽  
Vol 101 (4) ◽  
pp. 694-704 ◽  
Author(s):  
Akiyoshi Hishikawa ◽  
Kyoko Ohde ◽  
Ryuji Itakura ◽  
Shilin Liu ◽  
Kaoru Yamanouchi ◽  
...  

2020 ◽  
Author(s):  
Zoi Salta ◽  
Marc E. Segovia ◽  
Aline Katz ◽  
Nicola Tasinato ◽  
Vincenzo Barone ◽  
...  

Thione S-methylide (TSM), the parent species of the thiocarbonyl ylide family, is a 1,3-dipolar, planar species on the [C2SH4] potential energy surface (PES), which has not shared the richness of studies dedicated to its isomers, the cyclic thiirane (THI), and the keto-enol pair vinyl thiol (VTH)/thioacetaldehyde (THA). While the conrotatory ring closure reaction toward THI was studied in the ‘90s, no complete analysis of the PES is available in the literature. In the present paper, we report a computational study of the reaction scheme linking all species on that PES. We employ several levels of calculation, ranging from density functional theory (DFT), through CCSD(T) based composite schemes, to CASSCF/CASPT2 multi-reference procedures, to find the best description of TSM, its isomers, and the transition states (TSs) ruling their interconversion. Fragmentation of TSM, THA and THI were investigated and compared to the available experimental information. We found that the B2PLYP-D3 functional, contrary to M06-2XD3 or B97X-D, describes well the geometry of both TSM and the transition state connecting it to THI. The reverse barrier, from THI to TSM, amounts to 52.2 kcal mol-1 (to be compared to 17.6 kcal mol-1 for the direct one), thus explaining why, in general, thiocarbonyl ylides cannot be prepared from thiiranes. Conversion of THI to VTH implies also a large barrier, explaining why the reaction has been observed only at high temperatures. The fragmentation of THI to S(3P) or S(1D) and ethylene was also explored, together with the decomposition to H2S plus acetylene. Open species, both in triplet and singlet states, were identified as intermediates in the fragmentations, and their energies were found to be lower than the transition state for the isomerization of THI to VTH, thus explaining the preference for fragmentation over isomerization at relatively low temperatures.


2020 ◽  
Author(s):  
Shi Jun Ang ◽  
Wujie Wang ◽  
Daniel Schwalbe-Koda ◽  
Simon Axelrod ◽  
Rafael Gomez-Bombarelli

<div>Modeling dynamical effects in chemical reactions, such as post-transition state bifurcation, requires <i>ab initio</i> molecular dynamics simulations due to the breakdown of simpler static models like transition state theory. However, these simulations tend to be restricted to lower-accuracy electronic structure methods and scarce sampling because of their high computational cost. Here, we report the use of statistical learning to accelerate reactive molecular dynamics simulations by combining high-throughput ab initio calculations, graph-convolution interatomic potentials and active learning. This pipeline was demonstrated on an ambimodal trispericyclic reaction involving 8,8-dicyanoheptafulvene and 6,6-dimethylfulvene. With a dataset size of approximately</div><div>31,000 M062X/def2-SVP quantum mechanical calculations, the computational cost of exploring the reactive potential energy surface was reduced by an order of magnitude. Thousands of virtually costless picosecond-long reactive trajectories suggest that post-transition state bifurcation plays a minor role for the reaction in vacuum. Furthermore, a transfer-learning strategy effectively upgraded the potential energy surface to higher</div><div>levels of theory ((SMD-)M06-2X/def2-TZVPD in vacuum and three other solvents, as well as the more accurate DLPNO-DSD-PBEP86 D3BJ/def2-TZVPD) using about 10% additional calculations for each surface. Since the larger basis set and the dynamic correlation capture intramolecular non-covalent interactions more accurately, they uncover longer lifetimes for the charge-separated intermediate on the more accurate potential energy surfaces. The character of the intermediate switches from entropic to thermodynamic upon including implicit solvation effects, with lifetimes increasing with solvent polarity. Analysis of 2,000 reactive trajectories on the chloroform PES shows a qualitative agreement with the experimentally-reported periselectivity for this reaction. This overall approach is broadly applicable and opens a door to the study of dynamical effects in larger, previously-intractable reactive systems.</div>


Sign in / Sign up

Export Citation Format

Share Document