Numerical Implementation

Author(s):  
Nhan Phan-Thien ◽  
Sangtae Kim

Analytical solutions to a set of boundary integral equations are rare, even with simple geometries and boundary conditions. To make any reasonable progress, a numerical technique must be used. There are basically four issues that must be discussed in any numerical scheme dealing with integral equations. The first and most basic one is how numerical integration can be effected, together with an effective way of dealing with singular kernels of the type encountered in elastostatics. Numerical integration is usually termed numerical quadrature, meaning mathematical formulae for numerical integration. The second issue is the boundary discretization: when integration over the whole boundary is replaced by a sum of the integrations over the individual patches on the boundary. Each patch would be a finite element, or in our case, a boundary element on the surface. Obviously a high-order integration scheme can be devised for the whole domain, thus eliminating the need for boundary discretization. Such a scheme would be problem dependent and therefore would not be very useful to us. The third issue has to do with the fact that we are constrained by the very nature of the numerical approximation process to search for solutions within a certain subspace of L2, say the space of piecewise constant functions in which the unknowns are considered to be constant over a boundary element. It is the order of this subspace, together with the order and the nature of the interpolation of the geometry, that gives rise to the names of various boundary element schemes. Finally, one is faced with the task of solving a set of linear algebraic equations, which is usually dense (the system matrix is fully populated) and potentially ill-conditioned. A direct solver such as Gauss elimination may be very efficient for small- to medium-sized problems but will become stuck in a large-scale simulation, where the only feasible solution strategy is an iterative method. In fact, iterative solution strategies lead naturally to a parallel algorithm under a suitable parallel computing environment. This chapter will review various issues involved in the practical implementation of the CDL-BIEM on a serial computer and on a distributed computing environment.

2011 ◽  
Vol 2011 ◽  
pp. 1-27
Author(s):  
Jaroon Rungamornrat ◽  
Sakravee Sripirom

This paper presents an efficient numerical technique for stress analysis of three-dimensional infinite media containing cracks and localized complex regions. To enhance the computational efficiency of the boundary element methods generally found inefficient to treat nonlinearities and non-homogeneous data present within a domain and the finite element method (FEM) potentially demanding substantial computational cost in the modeling of an unbounded medium containing cracks, a coupling procedure exploiting positive features of both the FEM and a symmetric Galerkin boundary element method (SGBEM) is proposed. The former is utilized to model a finite, small part of the domain containing a complex region whereas the latter is employed to treat the remaining unbounded part possibly containing cracks. Use of boundary integral equations to form the key governing equation for the unbounded region offers essential benefits including the reduction of the spatial dimension and the corresponding discretization effort without the domain truncation. In addition, all involved boundary integral equations contain only weakly singular kernels thus allowing continuous interpolation functions to be utilized in the approximation and also easing the numerical integration. Nonlinearities and other complex behaviors within the localized regions are efficiently modeled by utilizing vast features of the FEM. A selected set of results is then reported to demonstrate the accuracy and capability of the technique.


2020 ◽  
Vol 36 (6) ◽  
pp. 749-761
Author(s):  
Y. -Y. Ko

ABSTRACTWhen the Symmetric Galerkin boundary element method (SGBEM) based on full-space elastostatic fundamental solutions is used to solve Neumann problems, the displacement solution cannot be uniquely determined because of the inevitable rigid-body-motion terms involved. Several methods that have been used to remove the non-uniqueness, including additional point support, eigen decomposition, regularization of a singular system and modified boundary integral equations, were introduced to amend SGBEM, and were verified to eliminate the rigid body motions in the solutions of full-space exterior Neumann problems. Because half-space problems are common in geotechnical engineering practice and they are usually Neumann problems, typical half-space problems were also analyzed using the amended SGBEM with a truncated free surface mesh. However, various levels of errors showed for all the methods of removing non-uniqueness investigated. Among them, the modified boundary integral equations based on the Fredholm’s theory is relatively preferable for its accurate results inside and near the loaded area, especially where the deformation varies significantly.


1984 ◽  
Vol 51 (3) ◽  
pp. 574-580 ◽  
Author(s):  
J. T. Katsikadelis ◽  
A. E. Armena`kas

In this investigation the boundary integral equation (BIE) method with numerical evaluation of the boundary integral equations is developed for analyzing clamped plates of any shape resting on an elastic foundation. A numerical technique for the solution to the boundary integral equations is presented and numerical results are obtained and compared with those existing from analytical solutions. The effectiveness of the BIE method is demonstrated.


2017 ◽  
Vol 743 ◽  
pp. 158-161
Author(s):  
Andrey Petrov ◽  
Sergey Aizikovich ◽  
Leonid A. Igumnov

Problems of wave propagation in poroelastic bodies and media are considered. The behavior of the poroelastic medium is described by Biot theory for partially saturated material. Mathematical model is written in term of five basic functions – elastic skeleton displacements, pore water pressure and pore air pressure. Boundary element method (BEM) is used with step method of numerical inversion of Laplace transform to obtain the solution. Research is based on direct boundary integral equation of three-dimensional isotropic linear theory of poroelasticity. Green’s matrices and, based on it, boundary integral equations are written for basic differential equations in partial derivatives. Discrete analogue are obtained by applying the collocation method to a regularized boundary integral equation. To approximate the boundary consider its decomposition to a set of quadrangular and triangular 8-node biquadratic elements, where triangular elements are treated as singular quadrangular. Every element is mapped to a reference one. Interpolation nodes for boundary unknowns are a subset of geometrical boundary-element grid nodes. Local approximation follows the Goldshteyn’s generalized displacement-stress matched model: generalized boundary displacements are approximated by bilinear elements whereas generalized tractions are approximated by constant. Integrals in discretized boundary integral equations are calculated using Gaussian quadrature in combination with singularity decreasing and eliminating algorithms.


2021 ◽  
Vol 83 (1) ◽  
pp. 76-86
Author(s):  
A.A. Belov ◽  
A.N. Petrov

The application of non-classical approach of the boundary integral equation method in combination with the integral Laplace transform in time to anisotropic elastic wave modeling is considered. In contrast to the classical approach of the boundary integral equation method which is successfully implemented for solving three-dimensional isotropic problems of the dynamic theory of elasticity, viscoelasticity and poroelasticity, the alternative nonclassical formulation of the boundary integral equations method is presented that employs regular Fredholm integral equations of the first kind (integral equations on a plane wave). The construction of such boundary integral equations is based on the structure of the dynamic fundamental solution. The approach employs the explicit boundary integral equations. The inverse Laplace transform is constructed numerically by the Durbin method. A numerical solution of the dynamic problem of anisotropic elasticity theory based on the boundary integral equations method in a nonclassical formulation is presented. The boundary element scheme of the boundary integral equations method is built on the basis of a regular integral equation of the first kind. The problem is solved in anisotropic formulation for the load acting along the normal in the form of the Heaviside function on the cube face weakened by a cubic cavity. The obtained boundary element solutions are compared with finite element solutions. Numerical results prove the efficiency of using boundary integral equations on a single plane wave in solving three-dimensional anisotropic dynamic problems of elasticity theory. The convergence of boundary element solutions is studied on three schemes of surface discretization. The achieved calculation accuracy is not inferior to the accuracy of boundary element schemes for classical boundary integral equations. Boundary element analysis of solutions for a cube with and without a cavity is carried out.


Author(s):  
Nhan Phan-Thien ◽  
Sangtae Kim

Despite the linearity of the Navier equations, solutions to complex boundaryvalue problems require substantial computing resources, especially in the so-called exterior problems, where the deformation field in the space between the inclusions to infinity must be calculated. In the traditional spatial methods, such as finite difference, finite element, or finite volume, this space must be discretized, perhaps with the help of "infinite" elements or a truncation scheme at a finite but large distance from the inclusions (Beer and Watson, Zienkiewicz and Morgan). There are two important limitations of spatial methods. The first is the mesh generation problem. To be numerically efficient, we must use unstructured mesh and concentrate our effort on where it is needed. Efficient two-dimensional, unstructured, automatic mesh generation schemes exist-one good example is Jin and Wiberg-but unstructured three-dimensional mesh generation is still an active area of research. The second limitation is much more severe: even a moderately complicated problem requires the use of supercomputers (e.g., Graham et al.). Since we are concerned with the large-scaled simulations of particulate composites, with the aim of furnishing constitutive information for modeling purposes, our system will possibly have tens of thousands of particles, and therefore the spatial methods are out of the question. We have seen how the deformation field can be represented by a boundary integral equations, either by a direct method, which deals directly with primitive variables (displacement and trciction) on the surface of the domain, or by the indirect method, where the unknowns are the fictitious densities on the surface of the domain. When the field point is allowed to reside on the surface of the domain, then a set of boundary integral equations results that relates only to the variables on the boundary (displacement and traction, or fictitious densities), and this is the basis of the boundary element method. The boundary is then discretized, and the integrals are evaluated by suitable quadratures; this then leads to a set of algebraic equations to be solved for the unknown surface variables.


Sign in / Sign up

Export Citation Format

Share Document