scholarly journals Boundary Element Shape Design Sensitivity Formulation of 3D Acoustic Problems Based on Direct Differentiation of Strongly-Singular and Hypersingular Boundary Integral Equations(Mechanical Systems)

2010 ◽  
Vol 76 (771) ◽  
pp. 2899-2908 ◽  
Author(s):  
Changjun ZHENG ◽  
Toshiro MATSUMOTO ◽  
Toru TAKAHASHI ◽  
Haibo CHEN
Author(s):  
Nhan Phan-Thien ◽  
Sangtae Kim

Analytical solutions to a set of boundary integral equations are rare, even with simple geometries and boundary conditions. To make any reasonable progress, a numerical technique must be used. There are basically four issues that must be discussed in any numerical scheme dealing with integral equations. The first and most basic one is how numerical integration can be effected, together with an effective way of dealing with singular kernels of the type encountered in elastostatics. Numerical integration is usually termed numerical quadrature, meaning mathematical formulae for numerical integration. The second issue is the boundary discretization: when integration over the whole boundary is replaced by a sum of the integrations over the individual patches on the boundary. Each patch would be a finite element, or in our case, a boundary element on the surface. Obviously a high-order integration scheme can be devised for the whole domain, thus eliminating the need for boundary discretization. Such a scheme would be problem dependent and therefore would not be very useful to us. The third issue has to do with the fact that we are constrained by the very nature of the numerical approximation process to search for solutions within a certain subspace of L2, say the space of piecewise constant functions in which the unknowns are considered to be constant over a boundary element. It is the order of this subspace, together with the order and the nature of the interpolation of the geometry, that gives rise to the names of various boundary element schemes. Finally, one is faced with the task of solving a set of linear algebraic equations, which is usually dense (the system matrix is fully populated) and potentially ill-conditioned. A direct solver such as Gauss elimination may be very efficient for small- to medium-sized problems but will become stuck in a large-scale simulation, where the only feasible solution strategy is an iterative method. In fact, iterative solution strategies lead naturally to a parallel algorithm under a suitable parallel computing environment. This chapter will review various issues involved in the practical implementation of the CDL-BIEM on a serial computer and on a distributed computing environment.


2020 ◽  
Vol 36 (6) ◽  
pp. 749-761
Author(s):  
Y. -Y. Ko

ABSTRACTWhen the Symmetric Galerkin boundary element method (SGBEM) based on full-space elastostatic fundamental solutions is used to solve Neumann problems, the displacement solution cannot be uniquely determined because of the inevitable rigid-body-motion terms involved. Several methods that have been used to remove the non-uniqueness, including additional point support, eigen decomposition, regularization of a singular system and modified boundary integral equations, were introduced to amend SGBEM, and were verified to eliminate the rigid body motions in the solutions of full-space exterior Neumann problems. Because half-space problems are common in geotechnical engineering practice and they are usually Neumann problems, typical half-space problems were also analyzed using the amended SGBEM with a truncated free surface mesh. However, various levels of errors showed for all the methods of removing non-uniqueness investigated. Among them, the modified boundary integral equations based on the Fredholm’s theory is relatively preferable for its accurate results inside and near the loaded area, especially where the deformation varies significantly.


2017 ◽  
Vol 743 ◽  
pp. 158-161
Author(s):  
Andrey Petrov ◽  
Sergey Aizikovich ◽  
Leonid A. Igumnov

Problems of wave propagation in poroelastic bodies and media are considered. The behavior of the poroelastic medium is described by Biot theory for partially saturated material. Mathematical model is written in term of five basic functions – elastic skeleton displacements, pore water pressure and pore air pressure. Boundary element method (BEM) is used with step method of numerical inversion of Laplace transform to obtain the solution. Research is based on direct boundary integral equation of three-dimensional isotropic linear theory of poroelasticity. Green’s matrices and, based on it, boundary integral equations are written for basic differential equations in partial derivatives. Discrete analogue are obtained by applying the collocation method to a regularized boundary integral equation. To approximate the boundary consider its decomposition to a set of quadrangular and triangular 8-node biquadratic elements, where triangular elements are treated as singular quadrangular. Every element is mapped to a reference one. Interpolation nodes for boundary unknowns are a subset of geometrical boundary-element grid nodes. Local approximation follows the Goldshteyn’s generalized displacement-stress matched model: generalized boundary displacements are approximated by bilinear elements whereas generalized tractions are approximated by constant. Integrals in discretized boundary integral equations are calculated using Gaussian quadrature in combination with singularity decreasing and eliminating algorithms.


Sign in / Sign up

Export Citation Format

Share Document