From Fact to Theory

Author(s):  
Naomi Oreskes

If continental drift was not rejected for lack of a mechanism, why was it rejected? Some say the time was not ripe. Historical evidence suggests the reverse. The retreat of the thermal contraction theory in the face of radioactive heat generation, the conflict between isostasy and land bridges, and the controversy that Wegener’s theory provoked all show that the time was ripe for a new theory. In 1921, Reginald Daly complained to Walter Lambert about the “bankruptcy in decent theories of mountain-building.” Chester Longwell opined in 1926 that the “displacement hypothesis, in its general form . . . promises a solution of certain troublesome enigmas.” A year later, William Bowie suggested in a letter to Charles Schuchert that it was time for “a long talk on some of the major problems of the earth’s structure and the processes which have caused surface change. The time is ripe for an attack on these larger phases of geology.” One possibility is that the fault lay with Wegener himself, that his deficiencies as a scientist discredited his theory. Wegener was in fact abundantly criticized for his lack of objectivity. In a review of The Origin of Continents, British geologist Philip Lake accused him of being “quite devoid of critical faculty.” No doubt Wegener sometimes expressed himself incautiously. But emphatic language characterized both sides of the drift debate, as well as later discussions of plate tectonics. The strength of the arguments was more an effect than a cause of what was at stake. Some have blamed Wegener’s training, disciplinary affiliations, or nationality for the rejection of his theory, but these arguments lack credibility. Wegener’s contributions to meteorology and geophysics were widely recognized; his death in 1930 prompted a full-page obituary in Nature, which recounted his pioneering contributions to meteorology and mourned his passing as “a great loss to geophysical science.” Being a disciplinary outsider can be an advantage — it probably was for Arthur Holmes when he first embarked on the radiometric time scale. To be sure, there were nation alistic tensions in international science in the early 1920s— German earth scientists complained bitterly over their exclusion from international geodetic and geophysical commissions— but by the late 1920s the theory of continental drift was associated as much with Joly and Holmes as it was with Wegener.

2014 ◽  
Vol 5 (1) ◽  
pp. 135-148 ◽  
Author(s):  
P. Sudiro

Abstract. During the first half of 20th century, the dominant global tectonics model based on Earth contraction had increasing problems accommodating new geological evidence, with the result that alternative geodynamic theories were investigated. Due to the level of scientific knowledge and the limited amount of data available in many scientific disciplines at the time, not only was contractionism considered a valid scientific theory but the debate also included expansionism, mobilism on a fixed-dimension planet, or various combinations of these geodynamic hypotheses. Geologists and physicists generally accepted that planets could change their dimensions, although the change of volume was generally believed to happen because of a contraction, not an expansion. Constant generation of new matter in the universe was a possibility accepted by science, as it was the variation in the cosmological constants. Continental drift, instead, was a more heterodox theory, requiring a larger effort from the geoscientists to be accepted. The new geological data collected in the following decades, an improved knowledge of the physical processes, the increased resolution and penetration of geophysical tools, and the sensitivity of measurements in physics decreased the uncertainty level in many fields of science. Theorists now had less freedom for speculation because their theories had to accommodate more data, and more limiting conditions to respect. This explains the rapid replacement of contracting Earth, expanding Earth, and continental drift theories by plate tectonics once the symmetrical oceanic magnetic striping was discovered, because none of the previous models could explain and incorporate the new oceanographic and geophysical data. Expansionism could survive after the introduction of plate tectonics because its proponents have increasingly detached their theory from reality by systematically rejecting or overlooking any contrary evidence, and selectively picking only the data that support expansion. Moreover, the proponents continue to suggest imaginative physical mechanisms to explain expansion, claiming that scientific knowledge is partial, and the many inconsistencies of their theory are just minor problems in the face of the plain evidence of expansion. According to the expansionists, scientists should just wait for some revolutionary discovery in fundamental physics that will explain all the unsolved mysteries of Earth expansion. The history of the expanding-Earth theory is an example of how falsified scientific hypotheses can survive their own failure, gradually shifting towards and beyond the limits of scientific investigation until they become merely pseudoscientific beliefs.


Author(s):  
Naomi Oreskes

Plate tectonics is the unifying theory of modern geology. This theory, which holds that the major features of the earth’s surface are created by horizontal motions of the continents, has been hailed as the geological equivalent of the “theory of the Bohr atom in its simplicity, its elegance, and its ability to explain a wide range of observation,” in the words of A. Cox. Developed in the mid-1960s, plate tectonics rapidly took hold, so that by 1971, Gass, Smith, and Wilson could say in their introductory textbook in geology: . . . During the last decade, there has been a revolution in earth sciences . . . which has led to the wide acceptance that continents drift about the face of the earth and that the sea-floor spreads, continually being created and destroyed. Finally in the last two to three years, it has culminated in an all-embracing theory known as “plate tectonics.” The success of plate tectonics theory is not only that it explains the geophysical evidence, but that it also presents a framework within which geological data, painstakingly accumulated by land-bound geologists over the past two centuries, can be fitted. Furthermore, it has taken the earth sciences to the stage where they can not only explain what has happened in the past, and is happening at the present time, but can also predict what will happen in the future. . . . Today moving continents are a scientific fact. But some forty years before the advent of the theory of plate tectonics, a very similar theory, initially known as the “displacement hypothesis,” was proposed and rejected by the geological fraternity. In 1912, a German meteorologist and geophysicist, Alfred Wegener, proposed that the continents of the earth were mobile; in the decade that followed he developed this idea into a full-fledged theory of tectonics that was widely discussed and debated and came to be known as the theory of continental drift. To a modern geologist, raised in the school of plate tectonics, Wegener’s book, The Origin of Continents and Oceans, appears an impressive and prescient document that contains many of the essential features of plate tectonic theory.


Author(s):  
Peter Molnar

‘The basic idea’ presents the principles of plate tectonics and describes how this revolutionary theory took hold. It begins with Alfred Wegener in 1912, who proposed the concept of continental drift and a former huge continent, Gondwanaland. In the face of strong opposition, this theory was supported by the development of palaeomagnetism in the 1950s and, in the 1960s, became subsumed within the broader framework of plate tectonics. Three major events precipitated this change: a switch in emphasis from continents to ocean basins and their exploration; rapid growth in seismology; and a shift in perspective from the chemical stratification of the Earth, in terms of crust and mantle, to another that emphasized strength—a strong lithosphere, some 100–200 km thick, overlying a weak asthenosphere.


Sign in / Sign up

Export Citation Format

Share Document