1. The basic idea

Author(s):  
Peter Molnar

‘The basic idea’ presents the principles of plate tectonics and describes how this revolutionary theory took hold. It begins with Alfred Wegener in 1912, who proposed the concept of continental drift and a former huge continent, Gondwanaland. In the face of strong opposition, this theory was supported by the development of palaeomagnetism in the 1950s and, in the 1960s, became subsumed within the broader framework of plate tectonics. Three major events precipitated this change: a switch in emphasis from continents to ocean basins and their exploration; rapid growth in seismology; and a shift in perspective from the chemical stratification of the Earth, in terms of crust and mantle, to another that emphasized strength—a strong lithosphere, some 100–200 km thick, overlying a weak asthenosphere.

Author(s):  
Naomi Oreskes

Plate tectonics is the unifying theory of modern geology. This theory, which holds that the major features of the earth’s surface are created by horizontal motions of the continents, has been hailed as the geological equivalent of the “theory of the Bohr atom in its simplicity, its elegance, and its ability to explain a wide range of observation,” in the words of A. Cox. Developed in the mid-1960s, plate tectonics rapidly took hold, so that by 1971, Gass, Smith, and Wilson could say in their introductory textbook in geology: . . . During the last decade, there has been a revolution in earth sciences . . . which has led to the wide acceptance that continents drift about the face of the earth and that the sea-floor spreads, continually being created and destroyed. Finally in the last two to three years, it has culminated in an all-embracing theory known as “plate tectonics.” The success of plate tectonics theory is not only that it explains the geophysical evidence, but that it also presents a framework within which geological data, painstakingly accumulated by land-bound geologists over the past two centuries, can be fitted. Furthermore, it has taken the earth sciences to the stage where they can not only explain what has happened in the past, and is happening at the present time, but can also predict what will happen in the future. . . . Today moving continents are a scientific fact. But some forty years before the advent of the theory of plate tectonics, a very similar theory, initially known as the “displacement hypothesis,” was proposed and rejected by the geological fraternity. In 1912, a German meteorologist and geophysicist, Alfred Wegener, proposed that the continents of the earth were mobile; in the decade that followed he developed this idea into a full-fledged theory of tectonics that was widely discussed and debated and came to be known as the theory of continental drift. To a modern geologist, raised in the school of plate tectonics, Wegener’s book, The Origin of Continents and Oceans, appears an impressive and prescient document that contains many of the essential features of plate tectonic theory.


Author(s):  
Fabienne Collignon

This chapter investigates insectile weapons systems, 'weird' war machines that, in one way or another, pertain to a 'becoming-insect'. Jussi Parikka argues that ‘insect media’ might yield a weird futurity that emerges due to modes of perception that are radically other. Yet this ontology of perceptive enmeshment also functions as immersion into sovereign super power and its swarm technologies. What Peter Sloterdijk calls an ‘aesthetics of immersion’ is considered in relation to ‘weird’ (China Miéville) war machines, focusing on the 1960s anti-missile missile project Safeguard in North Dakota. This pyramidal architecture of ‘defense’ also repeats a gigantic insect eye on each side of its building, whose fly-like ‘gaze’ transposes a wish to perceive the latent dimensions of the earth as total vision-field. Safeguard is linked to newer conceptualizations of war machinery whose ‘scopic’ regime operates through drone warfare. As a networked entity, the drone, also fly-like, acts in a functional circle of immersion and death distribution: the ‘face’ of the drone as expression of a weird futurity in which the notion of the insectile expresses, updates, super power as affective, rhythmic, a ‘becoming-insect’ that maintains a ‘thanatopolitics’.


Author(s):  
Roy Livermore

Written in a witty and informal style, this book explains modern plate tectonics in a non-technical manner, showing not only how it accounts for phenomena such as great earthquakes, tsunamis, and volcanic eruptions, but also how it controls conditions at the Earth’s surface, including global geography and climate, making it suitable for life. The book presents the advances that have been made since the establishment of plate tectonics in the 1960s, highlighting, on the fiftieth anniversary of the theory, the contributions of a small number of scientists who have never been widely recognized for their discoveries. Beginning with the publication of a short article in Nature by Vine and Matthews, the book traces the development of plate tectonics through two generations of the theory. First-generation plate tectonics covers the exciting scientific revolution of the 1960s, its heroes, and its villains. The second generation includes the rapid expansions in sonar, satellite, and seismic technologies during the 1980s and 1990s that provided a truly global view of the plates and their motions, and an appreciation of the role of their within the Earth system. Arriving at the cutting edge of the science, the latest results from studies using techniques such as seismic tomography and mineral physics to probe the deep interior are discussed and the prospects for finding plate tectonics on other planets assessed. Ultimately, the book leads to the startling conclusion that, without plate tectonics, the Earth would be as lifeless as Venus.


2016 ◽  
Vol 26 (1) ◽  
pp. 85-109 ◽  
Author(s):  
JAMES CHAPPEL

This essay explores the imagination of the family in 1950s West Germany, where the family emerged at the heart of political, economic and moral reconstruction. To uncover the intellectual origins of familialism, the essay presents trans-war intellectual biographies of Franz-Josef Würmeling, Germany's first family minister, and Helmut Schelsky, the most prominent family sociologist of the period. Their stories demonstrate that the new centrality of the family was not a retreat from ideology, as is often argued, but was in fact a reinstatement of interwar ideologies in a new key: social Catholicism in the former case, National Socialism in the latter. These divergent trajectories explain why Würmeling and Schelsky, despite being two central defenders of the family in the 1950s, could not work together. The essay follows their careers into the 1960s, suggesting that the fractious state of familialism in the 1950s helps us to understand its collapse in the face of the sexual revolution.


Author(s):  
John J. W. Rogers ◽  
M. Santosh

Alfred Wegener never set out to be a geologist. With an education in meteorology and astronomy, his career seemed clear when he was appointed Lecturer in those subjects at the University of Marburg, Germany. It wasn’t until 1912, when Wegener was 32, that he published a paper titled “Die Entstehung der Kontinente” (The origin of the continents) in a recently founded journal called Geologische Rundschau. This meteorologist had just fired the opening shot in a revolution that would change the way that geologists thought about the earth. In a series of publications and talks both before and after World War I, Wegener pressed the idea that continents moved around the earth independently of each other and that the present continents resulted from the splitting of a large landmass (we now call it a “supercontinent”) that previously contained all of the world’s continents. After splitting, they moved to their current positions, closing oceans in front of them and opening new oceans behind them. Wegener and his supporters referred to this process as “continental drift.” The proposal that continents moved around the earth led to a series of investigations and ideas that occupied much of the 20th century. They are now grouped as a set of concepts known as “plate tectonics.” We begin this chapter with an investigation of the history of this development, starting with ideas that preceded Wegener’s proposal. This is followed by a section that describes the reactions of different geologists to the idea of continental drift, including some comments that demonstrate the rancorous nature of the debate. The next section discusses developments between Wegener’s proposal and 1960, when Harry Hess suggested that the history of modern ocean basins is consistent with the concept of drifting continents. We finish the chapter with a brief description of seafloor spreading and leave a survey of plate tectonics to chapter 2. Although Wegener is credited with first proposing continental drift, some tenuous suggestions had already been made. We summarize some of this early history from LeGrand (1988).


2014 ◽  
Vol 5 (1) ◽  
pp. 135-148 ◽  
Author(s):  
P. Sudiro

Abstract. During the first half of 20th century, the dominant global tectonics model based on Earth contraction had increasing problems accommodating new geological evidence, with the result that alternative geodynamic theories were investigated. Due to the level of scientific knowledge and the limited amount of data available in many scientific disciplines at the time, not only was contractionism considered a valid scientific theory but the debate also included expansionism, mobilism on a fixed-dimension planet, or various combinations of these geodynamic hypotheses. Geologists and physicists generally accepted that planets could change their dimensions, although the change of volume was generally believed to happen because of a contraction, not an expansion. Constant generation of new matter in the universe was a possibility accepted by science, as it was the variation in the cosmological constants. Continental drift, instead, was a more heterodox theory, requiring a larger effort from the geoscientists to be accepted. The new geological data collected in the following decades, an improved knowledge of the physical processes, the increased resolution and penetration of geophysical tools, and the sensitivity of measurements in physics decreased the uncertainty level in many fields of science. Theorists now had less freedom for speculation because their theories had to accommodate more data, and more limiting conditions to respect. This explains the rapid replacement of contracting Earth, expanding Earth, and continental drift theories by plate tectonics once the symmetrical oceanic magnetic striping was discovered, because none of the previous models could explain and incorporate the new oceanographic and geophysical data. Expansionism could survive after the introduction of plate tectonics because its proponents have increasingly detached their theory from reality by systematically rejecting or overlooking any contrary evidence, and selectively picking only the data that support expansion. Moreover, the proponents continue to suggest imaginative physical mechanisms to explain expansion, claiming that scientific knowledge is partial, and the many inconsistencies of their theory are just minor problems in the face of the plain evidence of expansion. According to the expansionists, scientists should just wait for some revolutionary discovery in fundamental physics that will explain all the unsolved mysteries of Earth expansion. The history of the expanding-Earth theory is an example of how falsified scientific hypotheses can survive their own failure, gradually shifting towards and beyond the limits of scientific investigation until they become merely pseudoscientific beliefs.


2015 ◽  
Vol 34 (2) ◽  
pp. 263-274 ◽  
Author(s):  
David I. Spanagel

Attention to the histories of geography and of cartography can enable the historian of earth sciences to frame fruitful historical research questions. This paper briefly analyzes various nineteenth-century representations of geological and geographical information on maps of North American interior regions, as well as several examples drawn from the twentieth century geological debate surrounding continental drift/plate tectonics ideas (during the pre- and post-seafloor mapping eras). The purpose of reviewing these examples is to demonstrate how one might utilize analytical approaches and concepts developed by historians of cartography to interpret and trace the broader consequences of maps in the history of the earth sciences.


Sign in / Sign up

Export Citation Format

Share Document