Subvisual Cirrus

Cirrus ◽  
2002 ◽  
Author(s):  
David K. Lynch ◽  
Kenneth Sassen

Starting during World War II, pilots flying high over the tropics reported “a thin layer of cirrus 500ft above us”. Yet as they ascended, they still observed more thin cirrus above them, leading to the colloquialism “cirrus evadus.” With the coming of lidar in the early 1960s, rumors and unqualified reports of subvisual cirrus were replaced with validated detections, in situ sampling, and the first systematic studies (Uthe 1977; Barnes 1980, 1982). Heymsfield (1986) described observations over Kwajalein Atoll in the western tropical Pacific Ocean, where pilots and lidars could clearly see the cloud but DMSP (U.S. Defense Meteorological Satellite Program) radiance measurements and ground observers could not. The term “subvisual” is a relatively recent appellation. Prior terminology included cirrus haze, semitransparent cirrus, subvisible cirrus veils, low density clouds, fields of ice aerosols, cirrus, anvil cirrus, and high altitude tropical (HAT) cirrus. Subvisual cirrus clouds (SVC) are widespread (Winker and Trepte 1998; see chapter 12, this volume) and virtually undetectable with existing passive sensors. Orbiting solar limb occupation systems such as the Stratospheric Aerosol and Gas Experiment (SAGE) can detect these clouds, but only by looking at them horizontally where the optical depths are significant. SVC appear to affect climate primarily by heating the planet, though to what extent this may happen is unknown. Much of what we know is based on work by Heymsfield (1986), Platt et al. (1987), Sassen et al. (1989, 1992), Flatau et al. (1990), Liou et al. (1990), Hutchinson et al. (1991, 1993), Dalcher (1992), Sassen and Cho (1992), Takano et al. (1992), Lynch (1993), Schmidt et al. (1993), Schmidt and Lynch (1995), and Winker and Trepte (1998). SVC are defined as any high clouds composed primarily of ice (WMO 1975) and whose vertical visible optical depth is 0.03 or less (Sassen and Cho 1992). Such clouds are usually found near the tropopause and are less than about 1 km thick vertically. SVC do not appear to be fundamentally different from ordinary, optically thicker cirrus. They do, however, differ from average cirrus by being colder (-50-90°C), thinner (<0.03 optical depths at 0.694 μm), and having smaller particles (typically about <50μm diameter).

2021 ◽  
Author(s):  
Fabricio Prol ◽  
Mainul Hoque

&lt;p&gt;In this study, TEC measurements from METOP (Meteorological Operational) satellites are used together with a tomographic algorithm to estimate electron density distributions during geomagnetic storm events. The proposed method is applied during four geomagnetic storms to check the tomographic capabilities for space weather monitoring. The developed method was capable to successfully capture and reconstruct well-known enhancement and decrease of electron density during the geomagnetic storms. The comparison with in-situ electron densities from DMSP (Defense Meteorological Satellite Program) satellites has shown an improvement around 11% and a better plasma description compared to the background. Our study also reveals that the plasmasphere TEC contribution to ground-based TEC may vary 10 to 60% during geomagnetic storms, and the contribution tends to reduce during the storm-recovery phase.&lt;/p&gt;


2019 ◽  
Vol 9 ◽  
pp. A21
Author(s):  
David R. Themens ◽  
P. Thayyil Jayachandran ◽  
Anthony M. McCaffrey

The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM) is a new empirical model of high latitude ionospheric electron density. While the introductory studies regarding E-CHAIM include validations, E-CHAIM’s topside model was notably excluded from independent validation using datasets not included in the model fitting. In this study, we undertake such a validation using in situ electron density observations from the Defense Meteorological Satellite Program (DMSP) constellation of satellites and the Challenging Mini-satellite Payload (CHAMP) mission. Through this validation, we show that E-CHAIM generally outperforms the International Reference Ionosphere (IRI) at DMSP orbit (~830 km altitude), with RMS errors of 8.3–9.8 × 109 e/m3 versus the IRI’s 1.2–1.3 × 1010 e/m3. E-CHAIM’s improvement over the IRI is consistent at all latitudes but is particularly noted in sub-auroral regions and is mainly limited to summer and equinox periods. At CHAMP orbit, E-CHAIM and the IRI are found to perform largely comparably, with E-CHAIM outperforming the IRI only marginally with RMS errors of 7.11 × 1010 e/m3 versus the IRI’s 7.48 × 1010 e/m3. This improvement is found to be largely constrained to sub-auroral latitudes with both models performing comparably at higher latitudes. An observed tendency for the IRI to overestimate electron density in the near-peak (at CHAMP orbit) and underestimate electron density at higher altitudes (DMSP orbit) appears to be consistent with previous work, which identified this pattern to result from shortcomings in the NeQuick topside function curvature at high latitudes.


2020 ◽  
pp. 100-108
Author(s):  
Humberto A. Garcia Montano ◽  
Marcel Chow Martinez ◽  
Rosalba Silva Sozaa

En este estudio se pretende dar los primeros pasos para cuantificar la contaminación lumínica como consecuencia de la iluminación artificial en el occidente de la ciudad de Managua, Nicaragua. El grado de contaminación lumínica fue evaluado midiendo la dispersión de Rayleigh de la luz artificial sobre el cielo nocturno. Se realizaron mediciones in situ con el fotómetro Unihedron Sky Quality Meter (SQM-L) por las principales avenidas de la parte occidental de la ciudad Managua en noches de luna nueva y cielo despejado entre los meses de diciembre 2016 a enero 2017. Con estos datos se elaboró el primer mapa de la distribución espacial del brillo del cielo nocturno de la zona occidental de la ciudad de Managua y se obtuvo un brillo superficial de 16,45 mag/arcsec2. Este valor clasifica el brillo del cielo de Managua como Clase 6: Resplandor de Cielo Urbano de acuerdo a la escala Unihedron y en nivel Color Rojo de acuerdo a la escala de Bortle. Además, se usaron imágenes satelitales del Defense Meteorological Satellite Program (DMSP) para analizar el crecimiento de la iluminación artificial de Managua entre los años 1992 a 2013.


2020 ◽  
Vol 12 (23) ◽  
pp. 3946
Author(s):  
Pasquale Sellitto ◽  
Silvia Bucci ◽  
Bernard Legras

Clouds in the tropics have an important role in the energy budget, atmospheric circulation, humidity, and composition of the tropical-to-global upper-troposphere–lower-stratosphere. Due to its non-sun-synchronous orbit, the Cloud–Aerosol Transport System (CATS) onboard the International Space Station (ISS) provided novel information on clouds from space in terms of overpass time in the period of 2015–2017. In this paper, we provide a seasonally resolved comparison of CATS characterization of high clouds (between 13 and 18 km altitude) in the tropics with well-established CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) data, both in terms of clouds’ occurrence and cloud optical properties (optical depth). Despite the fact that cloud statistics for CATS and CALIOP are generated using intrinsically different local overpass times, the characterization of high clouds occurrence and optical properties in the tropics with the two instruments is very similar. Observations from CATS underestimate clouds occurrence (up to 80%, at 18 km) and overestimate the occurrence of very thick clouds (up to 100% for optically very thick clouds, at 18 km) at higher altitudes. Thus, the description of stratospheric overshoots with CATS and CALIOP might be different. While this study hints at the consistency of CATS and CALIOP clouds characterizaton, the small differences highlighted in this work should be taken into account when using CATS for estimating cloud properties and their variability in the tropics.


Sign in / Sign up

Export Citation Format

Share Document