Instantons in quantum mechanics (QM)

Author(s):  
Jean Zinn-Justin

Perturbative expansion can be generated by calculating Euclidean functional integrals by the steepest descent method always looking, in the absence of external sources, for saddle points in the form of constant solutions to the classical field equations. However, classical field equations may have non-constant solutions. In Euclidean stable field theories, non-constant solutions have always a larger action than minimal constant solutions, because the gradient term gives an additional positive contribution. The non-constant solutions whose action is finite, are called instanton solutions and are the saddle points relevant for a calculation, by the steepest descent method, of barrier penetration effects. This chapter is devoted to simple examples of non-relativistic quantum mechanics (QM), where instanton calculus is an alternative to the semi-classical Wentzel–Kramers–Brillouin (WKB) method. The role of instantons in some metastable systems in QM is explained. In particular, instantons determine the decay rate of metastable states in the semi-classical limit initially confined in a relative minimum of a potential and decaying through barrier penetration. The contributions of instantons at leading order for the quartic anharmonic oscillator with negative coupling are calculate explicitly. The method is generalized to a large class of analytic potentials, and explicit expressions, at leading order, for one-dimensional systems are obtained.

1996 ◽  
Vol 3 (3) ◽  
pp. 201-209 ◽  
Author(s):  
Chinmoy Pal ◽  
Ichiro Hagiwara ◽  
Naoki Kayaba ◽  
Shin Morishita

A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
L.-C. Ceng ◽  
Q. H. Ansari ◽  
C.-F. Wen

We consider a triple hierarchical variational inequality problem (in short, THVIP). By combining hybrid steepest descent method, viscosity method, and projection method, we propose an approximation method to compute the approximate solution of THVIP. We also study the strong convergence of the sequences generated by the proposed method to a solution of THVIP.


Sign in / Sign up

Export Citation Format

Share Document