Carbon-Carbon Bond Formation

Author(s):  
Douglass F. Taber

Akiya Ogawa of Osaka Prefecture University found (Tetrahedron Lett. 2010, 51, 6580) that the Sm-mediated reductive coupling of a halide 1 with CO2 to give the carboxylic acid 2 was strongly promoted by visible light. Gregory C. Fu of MIT designed (Angew. Chem. Int. Ed. 2010, 49, 6676) a Ni catalyst for the coupling of a primary borane 4 with a secondary alkyl halide 3. James P. Morken of Boston College devised (Org. Lett. 2010, 12, 3760) conditions for the carbonylative conjugate addition of a dialkyl zinc to an enone 6 to give the 1,4-dicarbonyl product 7. Louis Fensterbank of the Institut Parisien de Chimie Moléculaire developed (Angew. Chem. Int. Ed. 2010, 49, 8721; not illustrated) a protocol for the conjugate addition of alkyl boranes to enones. Hyunik Shin of LG Life Science, Daejeon, and Sang-gi Lee of Ewha Womans University showed (Tetrahedron Lett. 2010, 51, 6893) that the intermediate from Blaise homologation of a nitrile 8 was a powerful nucleophile, smoothly opening an epoxide 10 to deliver 11. Sébastien Reymond and Janine Cossy of ESPCI ParisTech found (J. Org. Chem. 2010, 75, 5151) that FeCl3 smoothly catalyzed the coupling of an alkenyl Grignard 13 with the primary iodide 12. The Ti-mediated coupling of an alkyne 16 with an allylic alkoxide 15 (J. Am. Chem. Soc. 2010, 132, 9576) developed by Glenn C. Micalizio of Scripps/Florida was the key step in the total synthesis (J. Am. Chem. Soc. 2010, 132, 11422) of lehualide B. Huanfeng Jiang of the South China University of Technology observed (Chem. Commun. 2010, 46, 8049) that KI added to a bromoalkyne 18 to give the dihalide 19 with high geometric control. Haruhiko Fuwa of Tohoku University improved (Org. Lett. 2010, 12, 5354) the selective hydroiodination of a methyl alkyne 20 to 21. Takuya Kurahashi and Seijiro Matsubara of Kyoto University devised (Chem. Commun. 2010, 46, 8055) the Ni-catalyzed three-component coupling of an alkyne 22, methyl acrylate 23, and phenyl isocyanate to give the doubly homologated lactam 24. Patrick H. Toy of the University of Hong Kong showed (Synlett 2010, 1997; Org. Lett. 2010, 12, 4996 for a polymer with covalently attached base) that resin-bound triphenylphosphine participated efficiently in the Wittig coupling of 26 with an aldehyde 25.

Author(s):  
Douglass F. Taber

Xile Hu of the Ecole Polytechnique Fédérale de Lausanne optimized (J. Am. Chem. Soc. 2011, 133, 7084) a Ni catalyst for the coupling of a Grignard reagent 2 with a secondary alkyl halide 1. Duk Keun An of Kangwon National University devised (Tetrahedron Lett. 2011, 52, 1718; Chem. Commun. 2011, 47, 3281) a strategy for the reductive coupling of an ester 4 with a Grignard reagent 2 to give the secondary alcohol. Daniel J. Weix of the University of Rochester added (Org. Lett. 2011, 13, 2766) the halide 7 in a conjugate sense to the bromoenone 6, setting the stage for further organometallic coupling. James Y. Becker of the Ben-Gurion University of the Negev effected (J. Org. Chem. 2011, 76, 4710) Kolbe coupling of the silyl acid 9 to give the decarboxylated dimer 10. Shi-Kai Tian of USTC Hefei showed (Chem. Commun. 2011, 47, 2158) that depending on the sulfonyl group used, the coupling of 11 with 12 could be directed cleanly toward either the Z or the E product. Yoichiro Kuninobu and Kazuhiko Takai of Okayama University added (Org. Lett. 2011, 13, 2959) the sulfonyl ketone 14 to the alkyne 13 to form the trisubstituted alkene 15. Jianbo Wang of Peking University assembled (Angew. Chem. Int. Ed. 2011, 50, 3510) the trisubstituted alkene 18 by adding the diazo ester 16 to the alkyne 17. Gangguo Zhu of Zhejiang Normal University constructed (J. Org. Chem. 2011, 76, 4071) the versatile tetrasubstituted alkene 21 by adding the chloroalkyne 19 to acrolein 20. Other more substituted acceptors worked as well. Chunxiang Kuang of Tongji University and Qing Yang of Fudan University effected (Tetrahedron Lett. 2011, 52, 992) elimination of 22 to 23 by stirring with Cs2CO3 at 115°C in DMSO overnight. Toshiaki Murai of Gifu University created (Chem. Lett. 2011, 40, 70) a propargyl anion by condensing 24 with 25 then adding 26. Xiaodong Shi of West Virginia University found (Org. Lett. 2011, 13, 2618) that the enantiomerically enriched propargyl ether 29 could be rearranged to the trisubsituted allene 30 with retention of the ee and with high de.


Author(s):  
Douglass F. Taber

Daniel J. Weix of the University of Rochester effected (Org. Lett. 2012, 14, 1476) the in situ reductive coupling of an alkyl halide 2 with an acid chloride 1 to deliver the ketone 3. André B. Charette of the Université de Montréal (not illustrated) developed (Nature Chem. 2012, 4, 228) an alternative route to ketones by the coupling of an organometallic with an in situ-activated secondary amide. Mahbub Alam and Christopher Wise of the Merck, Sharpe and Dohme UK chemical process group optimized (Org. Process Res. Dev. 2012, 16, 453) the opening of an epoxide 4 with a Grignard reagent 5. Ling Song of the Fujian Institute of Research on the Structure of Matter optimized (J. Org. Chem. 2012, 77, 4645) conditions for the 1,2-addition of a Grignard reagent (not illustrated) to a readily enolizable ketone. Wei-Wei Liao of Jilin University conceived (Org. Lett. 2012, 14, 2354) of an elegant assembly of highly functionalized quaternary centers, as illustrated by the conversion of 7 to 8. Antonio Rosales of the University of Granada and Ignacio Rodríguez-García of the University of Almería prepared (J. Org. Chem. 2012, 77, 4171) free radicals by reduction of an ozonide 9 in the presence of catalytic titanocene dichloride. In the absence of the acceptor 10, the dimer of the radical was obtained, presenting a simple alternative to the classic Kolbe coupling. Marc L. Snapper of Boston College found (Eur. J. Org. Chem. 2012, 2308) that the difficult ketone 12 could be methylenated following a modified Peterson protocol. Yoshito Kishi of Harvard University optimized (Org. Lett. 2012, 14, 86) the coupling of 15 with 16 to give 17. Masaharu Nakamura of Kyoto University devised (J. Org. Chem. 2012, 77, 1168) an iron catalyst for the coupling of 18 with 19. The specific preparation of trisubsituted alkenes is an ongoing challenge. Quanri Wang of Fudan University and Andreas Goeke of Givaudan Shanghai fragmented (Angew. Chem. Int. Ed. 2012, 51, 5647) the ketone 21 by exposure to 22 to give the macrolide 23 with high stereocontrol.


Author(s):  
Douglass Taber

Mohammad Navid Soltani Rad of Shiraz University of Technology has shown (Tetrahedron Lett. 2007, 48, 6779) that with tosylimidazole (TsIm) activation in the presence of NaCN, primary, secondary and tertiary alcohols are converted into the corresponding nitriles. Gregory C. Fu of MIT has devised (J. Am. Chem. Soc. 2007, 129, 9602) a Ni catalyst that mediated the coupling of sp3-hybridized halides such as 3 with sp3-hybridized organoboranes such as 4, to give 5. Usually, carbanions with good leaving groups in the beta position do not couple efficiently, but just eliminate. Scott D. Rychnovsky of the University of California, Irvine has found (Organic Lett . 2007, 9, 4757) that initial protection of 6 as the alkoxide allowed smooth reduction of the sulfide and addition of the derived alkyl lithium to the amide 7 to give 8. Doubly-activated Michael acceptors such as 11 are often too unstable to isolate. J. S. Yadav of the Indian Institute of Chemical Technology, Hyderabad has shown (Tetrahedron Lett. 2007, 48, 7546) that Baylis-Hillman adducts such as 9 can be oxidized in situ, with concomitant Sakurai addition to give 12. Rather than use the usual Li or Na or K enolate, Don M. Coltart of Duke University has found (Organic Lett. 2007, 9, 4139) that ketones such as 13 will condense with amides such as 14 to give the diketone 15 on exposure to MgBr2. OEt2 and i -Pr2 NEt. Simultaneously, Gérard Cahiez of the Université de Cergy (Organic Lett. 2007, 9, 3253) and Janine Cossy of ESPCI Paris (Angew. Chem. Int. Ed. 2007, 46, 6521) reported that Fe salts will catalyze the coupling of sp2 -hybridized Grignard reagents such as 17 with alkyl halides. John Montgomery of the University of Michigan has described (J. Am. Chem. Soc. 2007, 129, 9568) the Ni-mediated regio- and enantioselective addition of an alkynes 20 to an aldehyde 19 to give the allylic alcohol 21. In a third example of sp2 - sp3 coupling, Troels Skrydstrup of the University of Aarhus has established (J. Org. Chem. 2007, 72, 6464) that Negishi coupling with alkenyl phosponates such as 23 proceeded efficiently.


Author(s):  
Douglass F. Taber

Adriaan J. Minnaard and Ben L. Feringa of the University of Groningen devised (J. Am. Chem. Soc. 2010, 132, 14349) what promises to be a general strategy for the construction of enantiomerically pure cyclopropanes, based on conjugate addition to acceptors such as 1 . X. Peter Zhang of the University of South Florida developed (J. Am. Chem. Soc. 2010, 132, 12796) a Co catalyst for the enantioselective cyclopropanation of α-olefins such as 3. Seiji Iwasa of Toyohashi University of Technology designed (Angew. Chem. Int. Ed. 2010, 49, 8439) a resin-bound Ru catalyst that could be used repeatedly for the enantioselective cyclization of the ester 6. Rai-Shung Lin of National Tsing-Hua University showed (Angew. Chem. Int. Ed. 2010, 49, 9891) that a gold catalyst could expand the alkyne 8 to the cyclobutene 9. Takao Ikariya of the Tokyo Institute of Technology reported (J. Am. Chem. Soc. 2010, 132, 16637) a detailed study of the enantioselective conjugate addition of malonate 11 to cyclopentenone 10. Vladimir A. D’yakonov of the Russian Academy of Sciences, Ufa, showed (Tetrahedron Lett. 2010, 51, 5886) that a cyclic alkyne 13 could be annulated to the cyclopentenone 14. Shunichi Hashimoto of Hokkaido University also designed (Angew. Chem. Int. Ed. 2010, 49, 6979) a resin-bound Rh catalyst that could also be used repeatedly for the enantioselective cyclization of the ester 15. Tushar Kanti Chakraborty of the Central Drug Research Institute used (Tetrahedron Lett. 2010, 51, 4425) Ti(III) to mediate the diastereoselective cyclization of 17 to 18. Alexandre Alexakis of the University of Geneva extended (Synlett 2010, 1694) enantioselective conjugate addition of isopropenyl to the more difficult enone 19. Joseph P. A. Harrity of the University of Sheffield showed (Org. Lett. 2010, 12, 4832) that Pd could catalyze the rearrangement of 21 to 22. Strategies for the controlled construction of polycyclic ring systems are also important. Günter Helmchen of the Universität Heidelberg showed (J. Org. Chem. 2010, 75, 7917) that 23 was efficiently cyclized to the diene with Pt catalyst. The reaction could be carried out in the presence of the dienophile 24 to give 25 directly.


Author(s):  
Douglass F. Taber

Masahito Ochiai developed (Org. Highlights, March 24, 2008) the iodosobenzene-mediated cleavage of alkenes to keto aldehydes. Thottumkara K. Vinod of Western Illinois University described (Org. Lett. 2010, 12, 5640) a modified protocol that delivered the keto acid 2. Chi-Ming Che of the University of Hong Kong established (J. Am. Chem. Soc. 2010, 132, 13229) a method for the preparative scale Fe-catalyzed cis dihydroxylation of an alkene 3. Ilhyong Ryu of Osaka Prefecture University devised (Synlett 2010, 2014) a practical procedure for the free radical addition of HBr to an alkene 5. Tetsuo Ohta of Doshisha University showed (Tetrahedron Lett. 2010, 51, 2806) that a Ru catalyst could add an aromatic acid to the internal carbon of a terminal alkene 7. Noriki Kutsumura and Takao Saito of the Tokyo University of Science found (Org. Lett. 2010, 12, 3316) conditions for bromination/dehydrobromination to convert 10 to 11. Tsuyoshi Taniguchi of Kanazawa University oxidized (J. Org. Chem. 2010, 75, 8126) the alkene 12 to the nitro alkene 13. Professor Taniguchi added (Angew. Chem. Int. Ed. 2010, 49, 10154) methyl carbazate to 14 to give the β-hydroxy ester 15. Philippe Renaud of the University of Bern effected (J. Am. Chem. Soc. 2010, 132, 17511) the free radical homologation of 16 to the azide 18. Daniel P. Becker of Loyola University described (Tetrahedron Lett. 2010, 51, 3514) the elegant diastereoselective Pd-catalyzed bis-methoxycarbonylation of 19 to the diester 20. Matthew S. Sigman of the University of Utah established (J. Am. Chem. Soc. 2010, 132, 13981) the oxidative Heck arylation of 21 to 23. F. Dean Toste of the University of California, Berkeley, found (Org. Lett. 2010, 12, 4728) that the intermediate in the gold-catalyzed alkoxylation of 24 could couple to an aryl silane 25 to give 26. Chun-Yu Ho of the Chinese University of Hong Kong used (Angew. Chem. Int. Ed. 2010, 49, 9182) a Ni catalyst to add styrene 27 to the alkene 24. Masahiro Miura of Osaka University effected (J. Org. Chem. 2010, 75, 5421) the oxidative coupling of 29 with styrene 27 to give the linear product 30.


1988 ◽  
Vol 27 (18) ◽  
pp. 3066-3067 ◽  
Author(s):  
David Esjornson ◽  
Phillip E. Fanwick ◽  
Richard A. Walton

Sign in / Sign up

Export Citation Format

Share Document