The role of cardiac output response in blood flow distribution during exercise in patients with chronic heart failure

1995 ◽  
Vol 16 (7) ◽  
pp. 951-960 ◽  
Author(s):  
H. YAMABE ◽  
K. ITOH ◽  
Y. YASAKA ◽  
T. TAKATA ◽  
M. YOKOYAMA
2007 ◽  
Vol 292 (1) ◽  
pp. H580-H592 ◽  
Author(s):  
Jordan D. Miller ◽  
Curtis A. Smith ◽  
Sarah J. Hemauer ◽  
Jerome A. Dempsey

We sought to determine whether the normal inspiratory intrathoracic pressures (PITP) produced during exercise contribute to the blunted cardiac output and locomotor limb blood flow responses observed in chronic heart failure (CHF). Five chronically instrumented dogs exercised on a treadmill at 2.5 mile/h at 5% grade while healthy or after the induction of tachycardia-induced CHF. We observed several key differences in the cardiovascular responses to changes in the inspiratory PITP excursion between health and CHF; namely, 1) removing ∼70% of the normally produced inspiratory PITP excursion during exercise (with 15 cmH2O inspiratory positive pressure ventilation) significantly reduced stroke volume (SV) in healthy animals by 5 ± 2% ( P < 0.05) but significantly increased SV and cardiac output (QTOT) in animals with CHF by 5 ± 1% ( P < 0.05); 2) doubling the magnitude of the inspiratory PITP excursion had no effect on SV or QTOT in healthy animals but significantly reduced steady-state QTOT and SV in animals with CHF by −4 ± 3% and −10 ± 3%, respectively; 3) removing the majority of the normally produced inspiratory PITP excursion had no effect on blood flow distribution in healthy animals but increased hindlimb blood flow (9 ± 3%, P < 0.05) out of proportion to the increases in QTOT; and 4) the only similarity between healthy and CHF animals was that increasing the inspiratory PITP excursion significantly reduced steady-state locomotor limb blood flow by 5 ± 2% and 6 ± 3%, respectively ( P < 0.05 for both). We conclude that 1) the normally produced inspiratory PITP excursions are required for a maximal SV response to submaximal exercise in healthy animals but detrimental to the SV and QTOT responses to submaximal exercise in CHF, 2) the respiratory muscle ergoreflex tonically restrains locomotor limb blood flow during submaximal exercise in CHF, and 3) excessive inspiratory muscle work further compromises cardiac function and blood flow distribution in both health and CHF.


1990 ◽  
Vol 15 (2) ◽  
pp. A238
Author(s):  
Kazushi Itoh ◽  
Hiroshi Yamabe ◽  
Yoshinori Yasaka ◽  
Hiroyuki Namura ◽  
Yasunori Hashimoto ◽  
...  

1993 ◽  
Vol 183 (1) ◽  
pp. 301-321 ◽  
Author(s):  
A. S. Kolok ◽  
M. R. Spooner ◽  
A. P. Farrell

Cardiac output (Q.) and blood flow distribution were measured in adult largescale suckers at rest and while swimming. Cardiac output was directly measured using an ultrasonic flowprobe in fish during the summer (16°C), fall (10°C) and winter (5°C). Largescale suckers were adept at holding station against a current without swimming and, when engaged in this behavior, they did not significantly increase Q. relative to that found in fish in still water. When fish began to swim, Q. increased significantly. From 16 to 10°C, the critical swimming speed (Ucrit), maximum Q. and scope for Q. of the suckers did not change. However, from 10 to 5°C all three traits were significantly reduced. Thus, these fish respond to variation in water temperature in two different ways. From 16 to 10°C, the fish compensate perfectly for the change in temperature with respect to cardiac and swimming performance. From 10 to 5°C, however, largescale suckers experience a dramatic decline in cardiac and swimming performance that may be associated with a quiescent overwintering strategy. Blood flow distribution in the fish at rest and while swimming was measured at 16°C using injection of colored microspheres. In the resting fish, over 10 % of the microspheres were recovered from the kidney and over 43 % were recovered from white muscle. When the fish were swimming, there was a 60-fold increase in blood flow to the red muscle while blood flow to all other tissues remained consistent with that at rest.


1975 ◽  
Vol 13 (5) ◽  
pp. 581-586 ◽  
Author(s):  
Luis Blasco ◽  
Chung-Hsiu Wu ◽  
George L. Flickinger ◽  
David Pearlmutter ◽  
George Mikhail

1985 ◽  
Vol 248 (1) ◽  
pp. H98-H108
Author(s):  
D. G. van Wylen ◽  
L. G. D'Alecy

Regional blood flow distribution (microspheres) and cardiac output (CO, thermal dilution) were measured during the Cushing response in unblocked (UB), beta-receptor-blocked (BB, 2 mg/kg propranolol iv), or alpha-receptor blocked (AB, 0.5 mg/kg + 0.5 mg X kg-1 X min-1 phentolamine iv) chloralose-anesthetized dogs. Intracranial pressure was increased to 150 mmHg by infusion of temperature-controlled artificial cerebrospinal fluid into the cisterna magna. Similar increases in mean arterial pressure were seen in UB and BB, but in AB a Cushing response could not be sustained. In UB, cerebral blood flow (CBF) decreased 50%, coronary blood flow (CoBF) increased 120%, and peripheral tissue blood flow was reduced only in the kidneys (18%) and the intestines (small 22%, large 35%). Blood flow to the other viscera, skin, and skeletal muscle was unchanged. CO (16%) and heart rate (HR, 38%) decreased, and total peripheral resistance (TPR, 68%) and stroke volume (SV, 38%) increased. In BB, CBF decreased 50%, CoBF decreased 20%, and blood flow was reduced 40-80% in all peripheral tissues. CO (69%) and HR (62%) decreased, TPR increased 366%, and SV was unchanged. We conclude that the Cushing response in UB animals combines an alpha-receptor-mediated vasoconstriction with a beta-receptor cardiac stimulation. The beta-mechanism is neither necessary nor sufficient for the hypertension. However, the combination of alpha- and beta-adrenergic mechanisms maintains cardiac output and peripheral tissue blood flow relatively constant while producing a systemic hypertension.


1974 ◽  
Vol 2 (2) ◽  
pp. 149-163 ◽  
Author(s):  
Thomas G. Coleman ◽  
R. Davis Manning ◽  
Roger A. Norman ◽  
Arthur C. Guyton

Sign in / Sign up

Export Citation Format

Share Document