scholarly journals Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana

2008 ◽  
Vol 49 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Shogo Ito ◽  
Yusuke Niwa ◽  
Norihito Nakamichi ◽  
Hideaki Kawamura ◽  
Takafumi Yamashino ◽  
...  
2020 ◽  
Vol 48 (1) ◽  
pp. 128-139
Author(s):  
Yu-E DING ◽  
Wenkai HUANG ◽  
Bo SHU ◽  
Ying-Ning ZOU ◽  
Qiang-Sheng WU ◽  
...  

Circadian clock is usually involved in many physiological processes of plants, including responses to abiotic stress, whilst pseudo-response regulator 7 (PRR7) gene is the main component of the circadian clock. In this study, the cDNA of the PRR7 gene was obtained from trifoliate orange (Poncirus trifoliata). Based on the sequence analysis, the PtPRR7 gene had an open reading frame of 2343 bp, encoded 780 amino acids, and contained proteins of the REC and CCT domains. Subcellular localization indicated that PtPRR7 was mainly localized in the nucleus and a small amount of cytoplasm. qRT-PCR analysis revealed the highest expression level of PtPRR7 in roots than in both shoots and leaves. The PtPRR7 gene during 24 hours of soil water deficit exhibited a circadian rhythmic expression pattern: the expression peak at 9:00 am in leaves and at 21:00 pm in roots. Drought treatment affected PtPRR7 gene expression. Such data provide important references for understanding the characteristics of PtPRR7 gene in citrus plants.


2000 ◽  
Vol 41 (9) ◽  
pp. 1002-1012 ◽  
Author(s):  
Akinori Matsushika ◽  
Seiya Makino ◽  
Masaya Kojima ◽  
Takeshi Mizuno

2012 ◽  
Vol 287 (5) ◽  
pp. 373-388 ◽  
Author(s):  
Jin A. Kim ◽  
Jung Sun Kim ◽  
Joon Ki Hong ◽  
Yeon-Hee Lee ◽  
Beom-Soon Choi ◽  
...  

2019 ◽  
Author(s):  
Barbara A M Paffendorf ◽  
Rawan Qassrawi ◽  
Andrea M Meys ◽  
Laura Trimborn ◽  
Andrea Schrader

Pleiotropic regulatory factors mediate concerted responses of the plant’s trait network to endogenous and exogenous cues. TRANSPARENT TESTA GLABRA 1 (TTG1) is a pleiotropic regulator that has been predominantly described in its role as a regulator of early accessible developmental traits. Although its closest homologs LIGHT-REGULATED WD1 (LWD1) and LWD2 are regulators of photoperiodic flowering, a role of TTG1 in flowering time regulation has not been reported. Here we reveal that TTG1 is a regulator of flowering time in Arabidopsis thaliana and changes transcription levels of different targets within the flowering time regulatory pathway. TTG1 mutants flower early and TTG1 overexpression lines flower late at long-day conditions. Consistently, TTG1 can suppress the transcript levels of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO1 and can act as an activator of circadian clock components. Moreover, TTG1 might form feedback loops at the protein level. The TTG1 protein interacts with PSEUDO RESPONSE REGULATOR (PRR)s and basic HELIX-LOOP-HELIX 92 (bHLH92) in yeast. In planta, the respective pairs exhibit interesting patterns of localization including a recruitment of TTG1 by PRR5 to subnuclear foci. This mechanism proposes additional layers of regulation by TTG1 and might aid to specify the function of bHLH92. Within another branch of the pathway, TTG1 can elevate FLOWERING LOCUS C (FLC) transcript levels. FLC mediates signals from the vernalization, ambient temperature and autonomous pathway and the circadian clock is pivotal for the plant to synchronize with diurnal cycles of environmental stimuli like light and temperature. Our results suggest an unexpected positioning of TTG1 upstream of FLC and upstream of the circadian clock. In this light, this points to an adaptive value of the role of TTG1 in respect to flowering time regulation.


Sign in / Sign up

Export Citation Format

Share Document