rhythmic expression
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 58)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Jing Zhang ◽  
Lijia Zhao ◽  
Yating Li ◽  
Hao Dong ◽  
Haisen Zhang ◽  
...  

Autophagy of granulosa cells (GCs) is involved in follicular atresia, which occurs repeatedly during the ovarian development cycle. Several circadian clock genes are rhythmically expressed in both rodent ovarian tissues and GCs. Nuclear receptor subfamily 1 group D member 1 (NR1D1), an important component of the circadian clock system, is involved in the autophagy process through the regulation of autophagy-related genes. However, there are no reports illustrating the role of the circadian clock system in mouse GC autophagy. In the present study, we found that core circadian clock genes (Bmal1, Per2, Nr1d1, and Dbp) and an autophagy-related gene (Atg5) exhibited rhythmic expression patterns across 24 h in mouse ovaries and primary GCs. Treatment with SR9009, an agonist of NR1D1, significantly reduced the expression of Bmal1, Per2, and Dbp in mouse GCs. ATG5 expression was significantly attenuated by SR9009 treatment in mouse GCs. Conversely, Nr1d1 knockdown increased ATG5 expression in mouse GCs. Decreased NR1D1 expression at both the mRNA and protein levels was detected in the ovaries of Bmal1-/- mice, along with elevated expression of ATG5. Dual-luciferase reporter assay and electrophoretic mobility shift assay showed that NR1D1 inhibited Atg5 transcription by binding to two putative retinoic acid-related orphan receptor response elements within the promoter. In addition, rapamycin-induced autophagy and ATG5 expression were partially reversed by SR9009 treatment in mouse GCs. Taken together, our current data demonstrated that the circadian clock regulates GC autophagy through NR1D1-mediated inhibition of ATG5 expression, and thus, plays a role in maintaining autophagy homeostasis in GCs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Peng ◽  
Win Tun ◽  
Shuang-feng Dai ◽  
Jia-yue Li ◽  
Qun-jie Zhang ◽  
...  

Photoperiod sensitivity is a dominant determinant for the phase transition in cereal crops. CCT (CONSTANS, CO-like, and TOC1) transcription factors (TFs) are involved in many physiological functions including the regulation of the photoperiodic flowering. However, the functional roles of CCT TFs have not been elucidated in the wild progenitors of crops. In this study, we identified 41 CCT TFs, including 19 CMF, 17 COL, and five PRR TFs in Oryza rufipogon, the presumed wild ancestor of Asian cultivated rice. There are thirty-eight orthologous CCT genes in Oryza sativa, of which ten pairs of duplicated CCT TFs are shared with O. rufipogon. We investigated daily expression patterns, showing that 36 OrCCT genes exhibited circadian rhythmic expression. A total of thirteen OrCCT genes were identified as putative flowering suppressors in O. rufipogon based on rhythmic and developmental expression patterns and transgenic phenotypes. We propose that OrCCT08, OrCCT24, and OrCCT26 are the strong functional alleles of rice DTH2, Ghd7, and OsPRR37, respectively. The SD treatment at 80 DAG stimulated flowering of the LD-grown O. rufipogon plants. Our results further showed that the nine OrCCT genes were significantly downregulated under the treatment. Our findings would provide valuable information for the construction of photoperiodic flowering regulatory network and functional characterization of the CCT TFs in both O. rufipogon and O. sativa.


2021 ◽  
Author(s):  
Judit Vago ◽  
Eva Katona ◽  
Roland A. Takacs ◽  
Roza Zakany ◽  
Daan Van Der Veen ◽  
...  

Objective: The biomechanical environment plays a key role in regulating cartilage formation, but current understanding of mechanotransduction pathways in chondrogenic cells is still incomplete. Amongst the combination of external factors that control chondrogenesis are temporal cues that are governed by the cell-autonomous circadian clock. However, mechanical stimulation has not yet directly been proven to modulate chondrogenesis via entraining the circadian clock in chondroprogenitor cells. Design: The purpose of this study was to establish whether mechanical stimuli entrain the core clock in chondrogenic cells, and whether augmented chondrogenesis caused by mechanical loading was at least partially mediated by the synchronised, rhythmic expression of the core circadian clock genes, chondrogenic transcription factors, and cartilage matrix constituents. Results: We report here, for the first time, that cyclic uniaxial mechanical load applied for 1 hour for a period of 6 days entrains the molecular clockwork in chondroprogenitor cells during chondrogenesis in limb bud-derived micromass cultures. In addition to the several core clock genes, the chondrogenic markers SOX9, ACAN, and COL2A1 also followed a robust sinusoidal rhythmic expression pattern. These rhythmic conditions significantly enhanced cartilage matrix production and upregulated marker gene expression. The observed chondrogenesis-promoting effect of the mechanical environment was at least partially attributable to its entraining effect on the molecular clockwork, as co-application of the small molecule clock modulator longdaysin attenuated the stimulatory effects of mechanical load. Conclusions: Results from this study suggest that an optimal biomechanical environment enhances tissue homeostasis and histogenesis during early chondrogenesis through entraining the molecular clockwork.


2021 ◽  
Author(s):  
Hannah Rees ◽  
Rachel Rusholme-Pilcher ◽  
Paul Bailey ◽  
Joshua Colmer ◽  
Benjamen White ◽  
...  

AbstractThe circadian clock is a finely balanced time-keeping mechanism that coordinates programmes of gene expression. In polyploids, this regulation must be coordinated over multiple subgenomes. Here, we generate and analyse a high-resolution time-course dataset to investigate the circadian balance between sets of three homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit unbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Biological processes under circadian control are largely conserved between wheat and Arabidopsis, however striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs, and identifies clock-controlled pathways that might provide important targets for future wheat breeding.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
V Mastrullo ◽  
R S Matos ◽  
J H McVey ◽  
P Gupta ◽  
P Madeddu ◽  
...  

Abstract Background/Introduction Circadian rhythms, defined as biological oscillations with a period of circa 24h, regulate many physiological processes in the cardiovascular system, such as vascular function, vascular tone, blood pressure, heart rate and thrombus formation [1]. The vasculature responds to the main pacemaker located in the brain, but it also possesses its own clock. Indeed, a molecular clock has been identified in endothelial cells (EC) and smooth muscle cells (SMC). The disruption of the circadian clock profoundly affects cardiovascular functionality with adverse cardiovascular events such as myocardial infarction or stroke showing a 24h rhythmicity with a peak incidence in the early morning. Among several mechanisms affected by circadian dysregulation, angiogenesis plays a fundamental role in homeostasis and development of new blood vessels. EC and pericytes (PC) are the two main cell populations in the capillaries, and their physical and paracrine interaction drives and regulates the sprouting. However, the presence and the role of circadian rhythms in pericytes and whether the molecular clock affects the endothelial/pericyte interactions remain unexplored. Purpose The aim of this study is to identify a molecular clock in human vascular pericytes and elucidate the impact of the circadian clock on the formation of new blood vessels. Methods Human primary PC were synchronised and the rhythmicity of clock genes measured by luminescence, immunofluorescence, and qPCR. Synchronised PC were co-cultured with Bmal1::LUC human primary EC. The effect of PC synchronisation and circadian clock disruption by shRNA on EC clock genes and angiogenic potential were measured by luminescence and Matrigel assay, respectively. A macroporous polyurethane scaffold was developed for 3D co-cultures. Results PC presented rhythmic expression of the principal circadian genes with a circa 24h period but in our experimental setting, EC did not show circadian rhythmicity. Synchronised PC supported the rhythmic expression of the clock gene Bmal1 in EC in a contact co-culture system, suggesting a secondary form of EC molecular clock regulation. Non-contact co-cultures failed to synchronise EC. Furthermore, when the clock was disrupted in PC, their capacity to support EC's tube-forming capacity on Matrigel was impaired; clock disruption in EC did not affect angiogenesis, supporting the hypothesis that a disrupted clock in perivascular cells affects angiogenesis. In a 3D tissue engineering scaffold seeded with both EC and PC, the synchronisation of the clock led to the development of organised vascular-like structures around the scaffold's pores, as compared to the non-synchronised condition where cells appeared disorganised. Conclusion This study defines for the first time the existence of an endogenous molecular circadian clock in perivascular cells and suggests implications for circadian clock synchronisation in physiological and therapeutic angiogenesis. FUNDunding Acknowledgement Type of funding sources: Public Institution(s). Main funding source(s): University of Surrey Doctoral CollegeUniversity of Surrey Bioprocess and Biochemical Engineering (BioProChem) Group.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pedro Machado Almeida ◽  
Blanca Lago Solis ◽  
Luca Stickley ◽  
Alexis Feidler ◽  
Emi Nagoshi

AbstractVarious behavioral and cognitive states exhibit circadian variations in animals across phyla including Drosophila melanogaster, in which only ~0.1% of the brain’s neurons contain circadian clocks. Clock neurons transmit the timing information to a plethora of non-clock neurons via poorly understood mechanisms. Here, we address the molecular underpinning of this phenomenon by profiling circadian gene expression in non-clock neurons that constitute the mushroom body, the center of associative learning and sleep regulation. We show that circadian clocks drive rhythmic expression of hundreds of genes in mushroom body neurons, including the Neurofibromin 1 (Nf1) tumor suppressor gene and Pka-C1. Circadian clocks also drive calcium rhythms in mushroom body neurons via NF1-cAMP/PKA-C1 signaling, eliciting higher mushroom body activity during the day than at night, thereby promoting daytime wakefulness. These findings reveal the pervasive, non-cell-autonomous circadian regulation of gene expression in the brain and its role in sleep.


2021 ◽  
Author(s):  
Michal Dudek ◽  
Dharshika Pathiranage ◽  
Catia F Goncalves ◽  
Craig Lawless ◽  
Dong Wang ◽  
...  

In mammals, temporally coordinated daily rhythms of behaviour and physiology are generated by a multi-oscillatory circadian system, entrained through cyclic environmental cues (e.g. light). Presence of niche-dependent physiological time cues has been proposed, which would allow local tissues flexibility of adopting a different phase relationship if circumstances require. Up till now, such tissue-unique stimuli have remained elusive. Here we show that cycles of mechanical loading and osmotic stimuli within physiological range drive rhythmic expression of clock genes and reset clock phase and amplitude in cartilage and intervertebral disc tissues. Hyperosmolarity (and not hypo-osmolarity) resets clocks in young and ageing skeletal tissues through mTORC2-AKT-GSK3β pathway, leading to genome-wide induction of rhythmic genes. These results suggest diurnal patterns of mechanical loading and consequent daily surges in extracellular osmolarity as a bona fide tissue niche-specific time cue to maintain skeletal circadian rhythms in sync.


2021 ◽  
Vol 14 ◽  
Author(s):  
Gennaro Ruggiero ◽  
Zohar Ben-Moshe Livne ◽  
Yair Wexler ◽  
Nathalie Geyer ◽  
Daniela Vallone ◽  
...  

The zebrafish represents a powerful model for exploring how light regulates the circadian clock due to the direct light sensitivity of its peripheral clocks, a property that is retained even in organ cultures as well as zebrafish-derived cell lines. Light-inducible expression of the per2 clock gene has been predicted to play a vital function in relaying light information to the core circadian clock mechanism in many organisms, including zebrafish. To directly test the contribution of per2 to circadian clock function in zebrafish, we have generated a loss-of-function per2 gene mutation. Our results reveal a tissue-specific role for the per2 gene in maintaining rhythmic expression of circadian clock genes, as well as clock-controlled genes, and an impact on the rhythmic behavior of intact zebrafish larvae. Furthermore, we demonstrate that disruption of the per2 gene impacts on the circadian regulation of the cell cycle in vivo. Based on these results, we hypothesize that in addition to serving as a central element of the light input pathway to the circadian clock, per2 acts as circadian regulator of tissue-specific physiological functions in zebrafish.


2021 ◽  
Vol 13 ◽  
Author(s):  
Shuyuan Yang ◽  
Ying Wan ◽  
Na Wu ◽  
Lu Song ◽  
Zhihua Liu ◽  
...  

Objective: Patients with Parkinson's disease (PD) frequently experience disruptions in the 24-h daily profile of both behavioral and biological markers. However, whether L-3,4-dihydroxyphenylalanine (L-dopa) influences these markers associated with circadian rhythm or not is still an open question. This study aims to explore the L-dopa effects on the rhythmic expression of core clock proteins [brain and muscle Arnt-like protein-1 (BMAL1) and circadian locomotor cycle kaput (CLOCK)], in the striatum of the rat model of PD and its underlying molecular mechanisms.Methods: Unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat models were used in this study. L-dopa administrations were adopted to investigate the changes of circadian rhythm in PD. The behavioral tests and the measurements of the blood pressure (BP) and temperature were evaluated. The striatum was collected at intervals of 4 h. Western blot was used to examine the expressions of clock protein and the molecular protein of the D1R-ERK1/2-mTOR pathway. The rhythmic expressions of symptom parameters and circadian proteins were analyzed using the Cosinor model and/or the coefficient of variability (CV) that was used to describe the variability of the 24-h rhythm.Results: The circadian rhythms of BP and temperature were disrupted in 6-OHDA-lesioned PD rats compared with the sham group, while this process was reversed mildly by L-dopa treatment. The expressions of BMAL1 and CLOCK protein were rhythmic fluctuated without significant phase alterations when 6-OHDA or L-dopa was applied. Furthermore, the expressions of striatal BMAL1 protein in the 6-OHDA-lesioned group were significantly lower than those in the sham group at 04:00, 08:00, and 12:00, and the CLOCK protein was decreased at 04:00, 08:00, 12:00, 16:00, and 20:00 (all p < 0.05). The CV of the expressions of both BMAL1 and CLOCK was decreased in the 6-OHDA group; this process was reversed by L-dopa. Moreover, the CV of BMAL1 and CLOCK was elevated in the L-dopa rats. The phosphorylation levels of ERK1/2, S6K1, and 4E-BP1 in 6-OHDA-lesioned striatum were increased by L-dopa or D1 receptor agonist SKF38393 (p < 0.05, respectively), not by the combination of L-dopa and D1 receptor antagonist SCH23390, which was similar to the expressions of BMAL1 and CLOCK.Conclusion: L-dopa recovers the circadian rhythm disturbances in PD rats by regulating the D1R-ERK1/2-mTOR pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengbo Hao ◽  
Aimin Wu ◽  
Pengyun Chen ◽  
Hantao Wang ◽  
Liang Ma ◽  
...  

Photoperiod is an important external factor that regulates flowering time, the core mechanism of which lies in the circadian clock-controlled expression of FLOWERING LOCUS T (FT) and its upstream regulators. However, the roles of the circadian clock in regulating cotton flowering time are largely unknown. In this study, we cloned two circadian clock genes in cotton, GhLUX1 and GhELF3. The physicochemical and structural properties of their putative proteins could satisfy the prerequisites for the interaction between them, which was proved by yeast two-hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) assays. Phylogenetic analysis of LUXs and ELF3s indicated that the origin of LUXs was earlier than that of ELF3s, but ELF3s were more divergent and might perform more diverse functions. GhLUX1, GhELF3, GhCOL1, and GhFT exhibited rhythmic expression and were differentially expressed in the early flowering and late-flowering cotton varieties under different photoperiod conditions. Both overexpression of GhLUX1 and overexpression of GhELF3 in Arabidopsis delayed flowering probably by changing the oscillation phases and amplitudes of the key genes in the photoperiodic flowering pathway. Both silencing of GhLUX1 and silencing of GhELF3 in cotton increased the expression of GhCOL1 and GhFT and resulted in early flowering. In summary, the circadian clock genes were involved in regulating cotton flowering time and could be the candidate targets for breeding early maturing cotton varieties.


Sign in / Sign up

Export Citation Format

Share Document