Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa

2012 ◽  
Vol 287 (5) ◽  
pp. 373-388 ◽  
Author(s):  
Jin A. Kim ◽  
Jung Sun Kim ◽  
Joon Ki Hong ◽  
Yeon-Hee Lee ◽  
Beom-Soon Choi ◽  
...  
2020 ◽  
Author(s):  
Ping Lou ◽  
Scott Woody ◽  
Kathleen Greenham ◽  
Robert VanBuren ◽  
Marivi Colle ◽  
...  

ABSTRACTThe globally important crop Brassica rapa, a close relative of Arabidopsis, is an excellent system for modeling our current knowledge of plant growth on a morphologically diverse crop. The long history of B. rapa domestication across Asia and Europe provides a unique collection of locally adapted varieties that span large climatic regions with various abiotic and biotic stress tolerance traits. This diverse gene pool provides a rich source of targets with the potential for manipulation towards the enhancement of productivity of crops both within and outside the Brassicaceae. To expand the genetic resources available to study natural variation in B. rapa, we constructed an Advanced Intercross Recombinant Inbred (AI-RIL) population using B. rapa subsp. trilocularis (Yellow Sarson) R500 and the B. rapa subsp. parachinensis (Cai Xin) variety L58. Our current understanding of genomic structure variation across crops suggests that a single reference genome is insufficient for capturing the genetic diversity within a species. To complement this AI-RIL population and current and future B. rapa genomic resources, we generated a de novo genome assembly of the B. rapa subsp. trilocularis (Yellow Sarson) variety R500, the maternal parent of the AI-RIL population. The genetic map for the R500 x L58 population generated using this de novo genome was used to map QTL for seed coat color and revealed the improved mapping resolution afforded by this new assembly.


2014 ◽  
Vol 290 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Md. Abdul Kayum ◽  
Hee-Jeong Jung ◽  
Jong-In Park ◽  
Nasar Uddin Ahmed ◽  
Gopal Saha ◽  
...  

2020 ◽  
Vol 48 (1) ◽  
pp. 128-139
Author(s):  
Yu-E DING ◽  
Wenkai HUANG ◽  
Bo SHU ◽  
Ying-Ning ZOU ◽  
Qiang-Sheng WU ◽  
...  

Circadian clock is usually involved in many physiological processes of plants, including responses to abiotic stress, whilst pseudo-response regulator 7 (PRR7) gene is the main component of the circadian clock. In this study, the cDNA of the PRR7 gene was obtained from trifoliate orange (Poncirus trifoliata). Based on the sequence analysis, the PtPRR7 gene had an open reading frame of 2343 bp, encoded 780 amino acids, and contained proteins of the REC and CCT domains. Subcellular localization indicated that PtPRR7 was mainly localized in the nucleus and a small amount of cytoplasm. qRT-PCR analysis revealed the highest expression level of PtPRR7 in roots than in both shoots and leaves. The PtPRR7 gene during 24 hours of soil water deficit exhibited a circadian rhythmic expression pattern: the expression peak at 9:00 am in leaves and at 21:00 pm in roots. Drought treatment affected PtPRR7 gene expression. Such data provide important references for understanding the characteristics of PtPRR7 gene in citrus plants.


Sign in / Sign up

Export Citation Format

Share Document