scholarly journals Kinetic density fluctuations associated with envelope-modulated Alfvén waves in a solar wind plasma

2016 ◽  
Vol 2016 (4) ◽  
pp. 043J01 ◽  
Author(s):  
Yasuhiro Nariyuki
1999 ◽  
Vol 6 (3/4) ◽  
pp. 161-167 ◽  
Author(s):  
M. Prakash ◽  
P. H. Diamond

Abstract. The present work examines the effects arising from the nonlinear Landau damping and the bounced motion of protons (trapped in the mirror geometry of the geomagnetic field) in the formation of nonlinear Alfvénic structures. These structures are observed at distances 1-5AU in the solar wind plasma (with ß ~ 1). The dynamics of formation of these structures can be understood using kinetic nonlinear Schrodinger (KNLS) model. The structures emerge due to balance of nonlinear steepening (of large amplitude Alfvén waves) by the linear Landau damping of ion-acoustic modes in a finite ß solar wind plasma. The ion-acoustic mode is driven nonlinearly by the large amplitude Alfvén waves. At the large amplitudes of Alfvén wave, the effects due to nonlinear Landau damping become important. These nonlinear effects are incorporated into the KNLS model by modifying the heat flux dissipation coefficient parallel to the ambient magnetic field. The effects arising from the bounced motion (of mirroring protons) are studied using a one-dimensional Vlasov equation. The bounced motion of the protons can lead to growth of the ion-acoustic mode, propagating in the mirror geometry of the geomagnetic field. The significance of these studies in the formation of dissipative quasistationary structures observed in solar wind plasma is discussed.


Author(s):  
G. G. Howes

A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.


2000 ◽  
Vol 18 (8) ◽  
pp. 845-851 ◽  
Author(s):  
P. Alexander

Abstract. This work performs a search of phase-steepened Alfvén waves under a priori ideal conditions: a high-speed solar wind stream observed in one of the closest approaches to the Sun by any spacecraft (Helios 2). Five potential candidates were initially found following procedures established in earlier work. The observed cases exhibited arc-like or elliptical polarizations, and the rotational discontinuities that formed the abrupt wave edges were found at either the leading or the trailing part. The consideration of some additional specific parameters (mainly related to the relative orientation between mean magnetic field, wave and discontinuity) has been suggested here for an ultimate and proper identification of this kind of phenomenon. After the inclusion of these calculations in our analysis, even fewer cases than the five originals remain. It is suggested that optimum conditions for the detection rather than just for the existence of these events have to be reconsidered.Key words: Interplanetary physics (discontinuities; MHD waves and turbulence; solar wind plasma)


2007 ◽  
Vol 44 (3) ◽  
pp. 533-536 ◽  
Author(s):  
T. M. Mishonov ◽  
M. V. Stoev ◽  
Y. G. Maneva

1999 ◽  
Vol 17 (4) ◽  
pp. 463-489 ◽  
Author(s):  
P. Prikryl ◽  
J. W. MacDougall ◽  
I. F. Grant ◽  
D. P. Steele ◽  
G. J. Sofko ◽  
...  

Abstract. A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0). The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.Key words. Ionosphere (polar ionosphere). Magneto- spheric physics (magnetosphere-ionosphere interactions; polar wind-magnetosphere interactions).


Sign in / Sign up

Export Citation Format

Share Document