acceleration model
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 41)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Dang Trung ◽  
Nguyen Tuan ◽  
Nguyen Bang ◽  
Tran Tuyen

On the basis of the tracking multi-loop target angle coordinate system, the article has selected and proposed a interactive multi-model adaptive filter algorithm to improve the quality of the target phase coordinate filter. In which, the 3 models selected to design the line of sight angle coordinate filter; Constant velocity (CV) model, Singer model and constant acceleration model, characterizing 3 different levels of maneuverability of the target. As a result, the evaluation quality of the target phase coordinates is improved because the evaluation process has redistribution of the probabilities of each model to suit the actual maneuvering of the target. The structure of the filters is simple, the evaluation error is small and the maneuvering detection delay is significantly reduced. The results are verified through simulation, ensuring that in all cases the target is maneuvering with different intensity and frequency, the line of sight angle coordinate filter always accurately determines the target angle coordinates.


2021 ◽  
Vol 13 (18) ◽  
pp. 3702
Author(s):  
Youcun Wang ◽  
Min Li ◽  
Kecai Jiang ◽  
Wenwen Li ◽  
Geer Qin ◽  
...  

The Haiyang 2B (HY-2B) satellite requires precise orbit determination (POD) products for geodetic remote sensing techniques. An improved set of reduced-dynamic (RD) orbit solutions was generated from the onboard Global Positioning System (GPS) measurements over a 14-month period using refined strategies and processing techniques. The key POD strategies include a refined empirical acceleration model, in-flight calibration of the GPS antenna, and the resolution of single-receiver carrier-phase ambiguities. In this study, the potential periodicity of empirical acceleration in the HY-2B POD was identified by spectral analysis. In the along-track direction, a noticeable signal with four cycles per revolution (CPR) was significant. A mixed spectrum was observed for the cross-track direction. To better understand the real in-flight environment, a refined empirical acceleration model was used to cope with the time variability of empirical accelerations in HY-2B POD. Three POD strategies were used for the reprocessing for superior orbit quality. Validation using over one year of satellite laser ranging (SLR) measurements demonstrated a 5.2% improvement in the orbit solution of the refined model. Reliable correction for the GPS antenna phase center was obtained from an over-420-day dataset, and a trend in radial offset change was observed. After application of the in-flight calibration of the GPS antenna, a 26% reduction in the RMS SLR residuals was achieved for the RD orbit solution, and the carrier phase residuals were clearly reduced. The integer ambiguity resolution of HY-2B led to strong geometric constraints for the estimated parameters, and a 15% improvement in the SLR residuals could be inferred compared with the float solution.


Author(s):  
Antonios D. Livieratos ◽  
◽  
Vasilis Siemos ◽  

Purpose: Business accelerators have rapidly emerged as prominent players in the entrepreneurial ecosystem. A key strategic decision in designing acceleration programs is whether to customize or standardize the new venture development program (Cohen et al., 2019). Recognizing a trade-off between customization and standardization, the paper presents a multistage acceleration model aiming to harvest benefits of standardization while keeping several advantages found in tailor-made acceleration programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrew R. Mayer ◽  
Josef M. Ling ◽  
Andrew B. Dodd ◽  
Julie G. Rannou-Latella ◽  
David D. Stephenson ◽  
...  

Acceleration parameters have been utilized for the last six decades to investigate pathology in both human and animal models of traumatic brain injury (TBI), design safety equipment, and develop injury thresholds. Previous large animal models have quantified acceleration from impulsive loading forces (i.e., machine/object kinematics) rather than directly measuring head kinematics. No study has evaluated the reproducibility of head kinematics in large animal models. Nine (five males) sexually mature Yucatan swine were exposed to head rotation at a targeted peak angular velocity of 250 rad/s in the coronal plane. The results indicated that the measured peak angular velocity of the skull was 51% of the impulsive load, was experienced over 91% longer duration, and was multi- rather than uni-planar. These findings were replicated in a second experiment with a smaller cohort (N = 4). The reproducibility of skull kinematics data was mostly within acceptable ranges based on published industry standards, although the coefficients of variation (8.9% for peak angular velocity or 12.3% for duration) were higher than the impulsive loading parameters produced by the machine (1.1 vs. 2.5%, respectively). Immunohistochemical markers of diffuse axonal injury and blood–brain barrier breach were not associated with variation in either skull or machine kinematics, suggesting that the observed levels of variance in skull kinematics may not be biologically meaningful with the current sample sizes. The findings highlight the reproducibility of a large animal acceleration model of TBI and the importance of direct measurements of skull kinematics to determine the magnitude of angular velocity, refine injury criteria, and determine critical thresholds.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yulei Li

Sports energy consumption is a quantitative reflection of physical exercise effect. Combined with different sports modes and students’ physical characteristics, the calculation model of sports energy consumption is put forward. Firstly, the relationship between students’ age, height, weight, gender, and energy consumption is analyzed by using multiple linear regression method, and a linear acceleration model is proposed by combining different exercise methods. The relationship between the integral value of acceleration and energy consumption is analyzed, and a linear integral model based on different motion modes is proposed. Based on the kinetic energy theorem, the student movement energy expenditure is estimated. This paper proposes a human movement recognition method based on hybrid features, which mostly can represent the curve of the second generation wavelet transform edge thinning, and from the edge and texture features of the optimal said human posture, the statistical characteristic of the second generation wavelet transform is subtly trained as image characteristics, learning and recognition of human movement. Then, the motion recognition algorithm is tested, which can effectively identify the common movement patterns of primary and middle school students. Finally, the linear relationship between the estimation results of the model and the calculation results of Meijer is analyzed. The analysis results show that the linear acceleration model proposed in this paper can estimate the energy consumption of primary and middle school students’ motion relatively accurately.


2021 ◽  
Author(s):  
Evangelos Paouris ◽  
Angelos Vourlidas ◽  
Athanasios Papaioannou ◽  
Anastasios Anastasiadis

<p>The estimation of the Coronal Mass Ejection (CME) arrival is an open issue in the field of Space Weather. Many models have been developed to predict Time-of-Arrival (ToA). In this work, we utilize an updated version of the Effective Acceleration Model (EAM) to calculate the ToA. The EAM predicts the ToA of the CME-driven shock and the sheath's average speed at 1 AU. The model assumes that the interaction between the ambient solar wind and the interplanetary CME (ICME) results in constant acceleration or deceleration. We recently compared EAM against ENLIL and drag based models (DBEM) with a sample of 16 CMEs. We confirmed the well-known fact that the deceleration of fast ICMEs in the interplanetary medium is not captured by most models. We study further the deceleration of fast ICMEs by introducing, for the first time, wide-angle observations by the STEREO heliospheric imagers into the EAM model. The speed profiles for some test cases show deceleration in the interplanetary medium at greater distances compared with the field-of-view of the coronagraphs.</p>


Sign in / Sign up

Export Citation Format

Share Document